
Capturing Accurate Snapshots of the Gnutella Network

Daniel Stutzbach, Reza Rejaie
Department of Computer and Information Science

University of Oregon
{agthorr,reza}@cs.uoregon.edu

Abstract— A common approach for measurement-based
characterization of peer-to-peer (P2P) systems is to cap-
ture overlay snapshots using a crawler. The accuracy of
captured snapshots by P2P crawlers directly depends on
both the crawling speed and the fraction of unreachable
peers. This in turn affects the accuracy of the conducted
characterization based on these captured snapshots. Prior
studies frequently rely on crawling the network over an
hour or more, during which time the overlay may change
substantially. Moreover, none of the previous measurement-
based studies on P2P systems have examined the accuracy
of their captured snapshots or the impact on conducted
characterization.

In this paper, we present a fast P2P crawler called
Cruiser, discuss aspects of its design, and evaluate its
accuracy. Cruiser is able to crawl the million-node Gnutella
network in around 7 minutes. Having these accurate
snapshots enables us to quantify (i) the “relative error”
in captured snapshot as a function of crawling speed, (ii)
the tradeoff between the completeness and accuracy of
captured snapshots, and (iii) the effect of snapshot accuracy
on the correctness of characterizations of Gnutella.

I. INTRODUCTION

During recent years, the increasing popularity of peer-
to-peer (P2P) networks has led to growing interest
in measurement-based characterization of popular P2P
systems (e.g., [1, 2, 3]). These characterizations pro-
vide deeper insight into the behavior of P2P systems,
essential for proper design and effective evaluation.
These characterizations become more important as P2P
systems rapidly increase in use over the Internet [4, 5].
A common technique to characterize a P2P overlay is
to capture snapshots of the overlay topology with a
crawler, which queries peers for a list of their neighbors,
much the way a web spider retrieves web pages for
a list of pointers to other web pages. These snapshots
capture the overlay topology as a graph, with peers as
vertices and connections as edges. Examining individual
snapshots reveal various properties of the overlay (e.g.,
the size and diameter of the overlay and node degree
distribution), whereas the comparison of consecutive
snapshots identifies dynamics of various properties as a
function of time (e.g., dynamics of peer participation and
overlay structure). The accuracy of the conducted anal-
ysis based on the above methodology directly depends
on the accuracy of the captured snapshots.

A perfect snapshot of a P2P overlay is captured if
a crawl is complete and instantaneous. However, in

practice neither of these conditions are met for the
following reasons:
Rapidly Changing Topology: The goal of a crawler is to
capture a perfect instantaneous snapshot of the overlay
topology at an instant in time. However, crawlers contact
participating peers in a progressive fashion. Therefore,
capturing a snapshot may take a long time depending on
the speed of the crawler and its available resources (i.e.,
access link bandwidth and processing power). Given the
moving nature of P2P systems, as the duration of the
crawl increases, the captured snapshot becomes more
distorted compared to the instantaneous ideal because
more nodes arrive or depart during the crawl [6]. More-
over, in light of reported uptimes of just a few min-
utes [7, 8], crawls taking 30 to 120 minutes [9, 10] are
likely to be highly distorted. Furthermore, the duration
of the crawl determines the time between back-to-back
snapshots and thus determines the granularity of captured
dynamics. In other words, we cannot explore how the
topology has changed over a period of 10 minutes if it
takes an hour to capture a snapshot. Precisely quantifying
the distortion in a captured snapshot is difficult because
instantaneous reference snapshots are not available for
comparison.
Unreachable Peers: Captured snapshots are often in-
complete because a non-negligible portion of discov-
ered peers are not directly reachable by the crawler.
Previous studies often assume that unreachable peers
have departed the system and simply exclude them from
the captured snapshots. However, as we show in this
paper, a majority of unreachable peers are either located
behind a firewall (i.e., NATed) or, more interestingly,
are receiving too many SYN packets (i.e., overloaded).
Therefore, ignoring these peers could introduce a non-
negligible error in the captured snapshot. Moreover, there
is a fundamental tradeoff between the completeness and
the accuracy of a captured snapshot by a crawler. A
more persistent crawler can use longer timeouts when
contacting nodes or retry failed attempts, increasing the
number of successful contacts and the amount of data
collected, but at the expense of increasing the crawl
duration and thus the distortion in the capture compared
to the ideal instantaneous snapshot.

We developed a fast and efficient Gnutella crawler,
called Cruiser, that can capture the Gnutella network



with one million peers in around 7 minutes using six off-
the-shelf 1 GHz GNU/Linux boxes in our lab. Cruiser’s
crawling speed is about 140k peers/minute which is
orders of magnitude faster than previously reported
crawlers (i.e., 2 hours for 30K peers (250/minute) in [10],
and 2 minutes for 5K peer (2.5k/minute) in [2]).

Cruiser achieves this orders of magnitude increase in
crawl speed as follows: (i) it leverages several features of
modern Gnutella including its two-tier topology, efficient
new handshake mechanism, and high degree of node
connectivity among top-level peers, (ii) it substantially
increases the degree of concurrency during the crawling
process by deploying a master-slave architecture and
allowing each slave crawler to contact hundreds of peers
simultaneously. We present the high level architecture
and various systems issues and performance bottlenecks
for Cruiser.

We focus on the Gnutella network as a representative
P2P system for several reasons. First, several indicators
show that Gnutella has a large and growing population of
active users generating a considerable fraction of Internet
traffic. Over the past year, the number of active Gnutella
users has more than tripled and is currently at around
1.3 million simultaneous peers [11], making it one of
the largest P2P systems [4, 12]. Additionally, Gnutella
lends itself more readily to study as it has several mature,
open-source implementations and fully open protocol
specifications. In future work, we plan to adapt Cruiser
to other P2P systems. Finally, we believe that most of
the raised issues and findings are relevant to other P2P
systems, as the two-tier structure is used in several of the
most popular systems (such as FastTrack and eDonkey).

Compared with previous crawlers, Cruiser can capture
significantly more accurate snapshots of the Gnutella
network. Having more accurate snapshots enables us to
quantify (i) the “relative error” in captured snapshot as
a function of crawling speed and the ratio of unreach-
able peers, (ii) the tradeoff between completeness and
accuracy of captured snapshots, and (iii) the effect of
snapshot accuracy on the correctness of characterizations
of Gnutella.

II. MODERN GNUTELLA

In this section, we briefly describe a few key features
of modern Gnutella [13] that are used by Cruiser. The
original Gnutella protocol has limited scalability due
to its flat overlay. To address this limitation, modern
Gnutella clients implement a two-tiered network struc-
ture by dividing peers into two groups: ultrapeers (or
super-peers) and leaf peers. As shown in Figure 1, each
ultrapeer neighbors with several other ultrapeers within
a top-level overlay. The majority of the peers are leaves
that are connected to the overlay through a few ultra-
peers. Furthermore, modern Gnutella clients implement
a mechanism that allows high-bandwidth, un-firewalled

Legacy Peer
Ultra Peer
Leaf Peer

Top
-le

ve
l o

ve
rla

y o
f 

th
e G

nutel
la 

Top
olo

gy

Fig. 1. Two-Tier Topology of Modern Gnutella

leaf peers to become ultrapeers in order to maintain a
proper ultrapeer-to-leaf ratio in the overlay. Those peers
that do not implement the ultrapeer feature can only
reside in the top-level overlay and do not accept any
leaves. We refer to these peers as legacy peers. We also
refer to the legacy peers and ultrapeers collectively as
the top-level peers. Our recent measurements [11] reveal
that the degree of connectivity among top-level peers is
much higher than that in the flat original Gnutella.

III. THE GNUTELLA CRUISER

Our primary goal in the design of Cruiser is to
minimize distortion in captured snapshots by maximizing
the speed at which Cruiser explores the overlay topology.
We deploy several techniques and features to achieve this
design goal, as described below.
a) Handshaking: Modern Gnutella clients implement a
special handshaking feature [14] designed to facilitate
crawling; it allows a quick query to a peer for con-
nectivity information. This allows Cruiser to learn the
addresses of the peer’s neighbors and, for an ultrapeer,
the addresses of its leaves. Previous crawlers relied on
another feature of the Gnutella protocol, namely Ping-
Pong messages, to retrieve neighbor information. How-
ever, this technique was less efficient (requiring more
round-trip times) and has no way to report information
about the two-tier aspect of the topology.
b) Two-Tier Networks: Cruiser leverages the two-tier
structure of the modern Gnutella network (Figure 1) by
only crawling the top-level peers (i.e., ultrapeers and
legacy peers). Since each leaf must be connected to an
ultrapeer, this approach enables us to capture all the
nodes and links of the overlay by contacting a relatively
small fraction of all peers. Furthermore, the high degree
of peer connectivity within the top level overlay substan-
tially increases the rate of discovery for new ultrapeers.
Overall, this strategy leads to a major reduction (around
85%) in the duration of a crawl without any loss of
information.
c) Distributed Architecture: Cruiser employs a master-
slave architecture in order to achieve a high degree of
concurrency and to effectively utilize available resources
on multiple desktop PCs1. A master process coordinates
among multiple slave processes that act as virtually

1Using a master-slave architecture also allows us to deploy Cruiser
in a distributed fashion if Cruiser’s access link becomes a bottleneck.



independent crawlers and crawl disjoint portions of the
network in parallel. The slaves communicate with the
master using loose synchronization. Each slave has an
independent 2000-element queue of addresses to contact,
which the master fills. The slaves report back with the
data they’ve gathered. The master culls addresses from
the data and uses this to fill the queues. The crawl
terminates when all the queues are empty.
d) Asynchronous Communications: Each slave process
crawls hundreds of peers in parallel using asynchronous
communications. Cruiser implements an adaptive load
management mechanism to ensure that slave processes
remain busy but do not become overwhelmed. This is
important for the steady progress of the crawl especially
when different slave nodes have heterogeneous process-
ing capabilities. Toward this end, each slave monitors its
CPU load and adjusts its maximum number of parallels
connections using an AIMD algorithm similar to TCP’s
congestion control mechanism. In practice, each PC
typically runs with close to 1,000 parallel connections,
contributing an additional speed-up of nearly three orders
of magnitude.

Each slave maintains a parameter, call max concur,
that limits the maximum number of open connections,
similar to a TCP congestion window. No new connec-
tions will be attempted if it would exceed that threshold.
Because there is a high delay between opening connec-
tions and the increase in CPU load2, max concur should
not be adjusted too frequently. To measure CPU load,
each slave sets up a timer to fire every half-second. If
this timer is more than 50% late, this is interpreted as a
signal of high CPU load: max concur is multiplicatively
decreased to 90% of its value and is not changed until the
timer is on time. When the timer is on time, max concur

is linearly increased by one. Similar to TCP Slow
Start, max concur is multiplicatively increased by 1.2
during the initial phase of crawling to quickly reach an
appropriate value. These parameters were set empirically
through experimentation with our own PCs. A similar
adaptation mechanism should be incorporated to adjust
the total number of parallel connections in order to avoid
congestion on the access link of the crawler, though thus
far this has not been a bottleneck for our systems.

We have experienced other system issues in the de-
velopment of Cruiser that are worth mentioning. In
particular, we needed to increase the limit on the number
of open file descriptors on each Linux box. Otherwise,
many connection attempts return immediately with an
automatic “Connection Refused” error. In a similar vein,
we increased the number of connections that our lab
firewall could track to prevent the firewall from dropping

2This delay is the time from when the crawler sends the first TCP
SYN packet until the connection is established and data is returned by
the peer, i.e., at least two round-trip times.

0

20

40

60

80

100

0 10 20 30 40 50 60

0

2

4

6

8

10

12

Pe
rc

en
ta

ge

C
ra

w
l

D
ur

at
io

n
(m

in
ut

es
)

Timeout (seconds)

Duration
Percent Unreachable

Fig. 2. Effects of the timeout length on crawl duration and snapshot
completeness

packets due to this constraint.
e) Appropriate Timeouts: When peers are unresponsive,
waiting for TCP to timeout and give up attempting to
connect takes a long time. On our systems, a full TCP
timeout to an unresponsive address takes more than 3
minutes. While this is suitable for many interactive and
automated applications, we conducted an evaluation of
the cost versus benefit of different timeout values for
crawling. As a function of the timeout length, Figure 2
shows the duration of the crawl and the percentage of
peers that were unreachable. We see that while very
low timeouts (less than 10 seconds) result in a dramatic
increase in the number of unreachable peers, there are
diminishing returns for using longer timeout values,
while the crawl length (and thus distortion) continues
to increase. In other words, if a peer has not responded
after 10 seconds, it is unlikely to ever respond. Therefore,
we use a timeout of 10 seconds, providing an additional
speedup of more than a factor of two.
A. Unreachable Peers

A non-negligible portion of discovered peers in any ar-
bitrary crawl (30%-38%) are not reachable by a crawler.
More specifically, TCP connections to these peers ei-
ther timeout (15%-24%), are dropped (6%-10%), or are
refused with a TCP reset (5%-7%) by the contacted
peers. Since firewalls can exhibit timeout or refusal
behaviors, there is no reliable test to distinguish between
departed and firewalled peers. We also discovered that
some of the unreachable peers are actually overwhelmed
ultrapeers that sporadically accept TCP connections and
can be contacted after several attempts. This transport-
layer refusal means that the application is not able to
call accept() sufficiently fast which leads to a TCP listen
buffer overflow. We also noticed that connections to
most of these overwhelmed ultrapeers exhibit long RTT
(> 1sec) and little to no loss. This indicates that their
CPU is the bottleneck. Despite this finding, we did not
incorporate a multiple attempt strategy into the crawler
for two reasons: (i) it only marginally increases the
number of reachable peers at the cost of significantly
increasing the duration of each crawl which in turn
increases distortion in captured snapshot, and (ii) it is
intrusive and may exacerbate the existing problem.



Unreachable ultrapeers can introduce the following
errors in a captured snapshot: (i) including unreachable
peers that were departed, (ii) missing links between
unreachable ultrapeers and their leaves, and (iii) missing
links between two unreachable ultrapeers. To quantify
these errors, it is important to determine what portion
of unreachable peers were departed versus firewalled or
overloaded. Previous studies assumed that these unreach-
able peers have departed or located behind a firewalls,
and excluded them from their snapshots.

We have conducted further investigation to determine
the status of these unreachable peers. First, we devised
the following simple technique to identify the ratio of
departed peers in each snapshot. We performed back-to-
back crawls to capture two snapshots. Then, the unreach-
able peers in the first snapshot that were missing from
the second snapshot are considered “departed peers”
during the first snapshot. This approach revealed that
departed peers constitute only 2–3% of unreachable
peers in each snapshot. Second, we examined those
unreachable peers that Cruiser considers to have timed
out. Since overwhelmed ultrapeers refuse connections,
we hypothesized that this group of peers is firewalled.

To verify this hypothesis, we randomly selected 1000
(about 3% of) peers that were unreachable due to time
out, and re-contacted them every 5 minutes3. Interest-
ingly, more than 92% of these peers were never reachable
at all. This implies that timeout is a good indicator for
firewalled peers. In summary, our investigation revealed
that in each crawl, 2%–3% of unreachable peers are
departed, and most of 15%–24% peers which timeout are
firewalled. The remaining unreachable peers are either
firewalled or overwhelmed ultrapeers.

IV. PERFORMANCE EVALUATION

We have been running Cruiser on six 1Ghz Pentium
III PCs in our lab during the past year and have captured
more than 20,000 snapshots of the Gnutella network. In
this section, we present results to evaluate the ability of
Cruiser to capture accurate snapshots and examine a few
key tradeoffs.
a) Impact of Crawling Speed: To examine the impact
of crawling speed on the accuracy of captured snap-
shots, we adjusted the crawling speed (and thus crawl
duration) of Cruiser by changing the number of parallel
connections that each slave process can open. Note that
slow crawlers can effectively emulate the behavior of
previously reported crawlers which have a lower degree
of concurrency. We performed two back-to-back crawls
for each crawling speed. We define δ+ and δ

−
as

the number of new and missing top-level peers in the
second snapshot compared to the first one, respectively

3Note that each attempt translates into several attempts by TCP to
establish a connection by sending SYN packets.

(normalized by the total number of peers in the first
crawl). Figure 3 depicts δ = δ++δ

−

2
as a function of

crawl duration. The first snapshot was captured with the
maximum speed and serves as a reference whereas the
speed (and thus duration) of the second snapshot has
changed. The duration of the second snapshot is shown
as the x value. This figure clearly demonstrates that
accuracy of snapshots decreases with the duration of
the crawl, because the increased δ reflects changes in
the topology that occur while the crawler is running.
Additionally, Figure 3 shows the fraction of edges that
were created or torn down during the crawl, i.e., reported
by only one of two contacted peers.

b) Completeness of Snapshots: To examine the com-
pleteness of snapshots captured by Cruiser, we kept
track of the following variables during each crawl: the
number of discovered top-level peers, the number of
leaves, the number of links between ultrapeers, and the
number of links to leaves. Figure 4 presents variations
of these four variables as a function of the number
of contacted peers in a sample crawl. Note that the
number of discovered top-level peers as well as leaves
curve off which is evidence that Cruiser has captured
nearly all the participating peers. Links between top-
level peers somewhat curves off. Finally, links to leaves
is linearly increasing with the number of top-level peers
because each top-level peers provide a unique set of links
between itself and its leaves.

c) Accuracy-Completeness Tradeoff: To examine the
accuracy-completeness tradeoff for captured snapshots,
we modified Cruiser to stop the crawl after a specified
period. Then, we performed two back-to-back crawls and
repeated this process for different durations. Figure 5
clearly demonstrates the accuracy-completeness tradeoff.
During short crawls (on the left side of the graph), δ is
high because the captured snapshot is incomplete, and
each crawl captures a different subset. As the duration of
the crawl increases, δ decreases which indicates that the
captured snapshot becomes more complete. Increasing
the crawl length beyond four minutes does not decrease
δ any further, and achieves only a marginal increase in
number of discovered peers (i.e., completeness). This
figure reveals a few important points. First, there exists a

0

20

40

60

80

100

0 20 40 60 80 100 120

D
is

to
rt

io
n

(%
)

Crawl Duration (minutes)

Edge Distortion

3

3

3
3

3

Node Distortion (δ)

+
+++

+

Fig. 3. Effect of crawl speed on the accuracy of captured snapshots.



0

500

1000

1500

2000

0 20000 40000 60000 80000

N
od

es
/li

nk
s

di
sc

ov
er

ed
(k

)

Top-level nodes contacted

Leaf Links
Top-level Links

Leaf Nodes
Top-level Nodes

Fig. 4. Cumulative dicovered information about overlay nodes and
links as a function of number of contacted peers

“sweet spot” for crawl duration beyond which crawling
has diminishing returns if the goal is simply to capture
the population. Second, for sufficiently long crawls,
Cruiser can capture a relatively un-stretched snapshot.
Third, the change of δ = 4% is an upper-bound on the
distortion due to the passage of time as Cruiser runs.
The relatively flat delta on the right suggest that around
4% of the network is unstable and turns over quickly.

d) Impact of Snapshot Accuracy on P2P Characteriza-
tion: To explore the impact of snapshot accuracy on
analysis and conclusions, we plot two observed degree
distributions in Figure 6: one captured running Cruiser
at top speed, and one captured with Cruiser limited to
60 parallel connections, similar to the 50-connection
crawler used in an earlier study [10]. The obtained
degree distribution from the quick snapshot is relatively
flat up until around 30, where there is a noticeable
spike, then it drops off considerably with another small
spike at degree 45. This corresponds with the default
degrees that popular Gnutella clients attempt to maintain.
There are negligible peers with higher degree. However,
the degree distribution from the slower, more distorted
snapshot exhibits a slight downward trend, followed
by a power-law tail. This roughly matches the two-
piece power-law degree distribution that was reported
by Ripeanu et al. [10] with a similar slow crawler a
few years ago. Note that the observed power-law degree
distribution is a side-effect of unequal peer uptimes.
More specifically, to a slow crawler, peers with long
uptimes appear as high degree because many short-
lived peers report them as neighbors. However, this is

0

20

40

60

80

100

120

0 50 100 150 200 250 300

0

100

200

300

400

500

600

700

800

C
ha

ng
e

in
pe

er
s

(δ
)

Pe
er

s
di

sc
ov

er
ed

(k
)

Maximum crawl duration (seconds)

δ

3

3
3

3
3 3 3 3 3 3 3 3 3 3 3

3

Peers Discovered

+

+
+

+
+ + + + + + + + + + +

+

Fig. 5. Error as a function of maximum crawl duration, generated by
running two crawls back-to-back for each x-value and computing the
δ. Averaged over 8 runs with standard deviation shown.

0.001

0.01

0.1

1

10

1 10 100

%
of

to
p-

le
ve

l
no

de
s

w
ith

th
at

de
gr

ee

Degree

Slow crawl
Fast crawl

Fig. 6. Observed top-level degree distributions in a slow and a fast
crawl

a mischaracterization since these short-lived peers are
not all present at the same time. This comparison is
an evidence that reported power-law degree distributions
in unstructured P2P networks by previous studies may
merely be an artifact of inaccurate measurement, and we
demonstrate with certainty that Gnutella does not have
a power-law degree distribution today.

It is worth clarifying that the impact of snapshot
accuracy (or granularity) on the correctness of conducted
characterizations is likely to vary for different types of
characterization, i.e., the required degree of accuracy
for captured snapshots depends on the desired charac-
terization. For example, a study on churn only requires
information about participating peers and may not need
to directly contact all peers. In contrast, to study the
overlay topology, a captured snapshot should include
all edges of the overlay which requires the crawler to
directly contact every ultrapeer otherwise a connection
between unvisited peers will be easily missed.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present Cruiser, a fast crawler
for two-tier peer-to-peer systems such as Gnutella. We
present the different techniques used in Cruiser to
achieve its high speed, including leveraging the two-
tier structure, a distributed architecture, asynchronous
communications, and choosing appropriate timeout val-
ues. We also present techniques for quantifying the
measurement inaccuracy introduced by crawl speed and
present evidence that the error in Cruiser’s snapshots is
reasonably small.

In future work, we plan to use measurements gathered
by Cruiser to characterize the Gnutella overlay topology,
including its static and dynamic properties. We also plan
to extend Cruiser to crawl other two-tier peer-to-peer
systems for comparative analysis.

REFERENCES

[1] Ranjita Bhagwan, Stefan Savage, and Geoffrey Voelker, “Under-
standing Availability,” in International Workshop on Peer-to-Peer
Systems, 2003.

[2] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble,
“Measuring and Analyzing the Characteristics of Napster and
Gnutella Hosts,” Multimedia Systems Journal, vol. 8, no. 5, Nov.
2002.



[3] Alexander Klemm, Christoph Lindemann, Mary Vernon, and
Oliver P. Waldhorst, “Characterizing the Query Behavior in
Peer-to-Peer File Sharing Systems,” in Internet Measurement
Conference, Taormina, Italy, Oct. 2004.

[4] Thomas Karagiannis, Andre Broido, Nevil Brownlee, Kimberly
Claffy, and Michalis Faloutsos, “Is P2P dying or just hiding?,”
in Globecom, Dalls, TX, Nov. 2004.

[5] Thomas Karagiannis, Andre Broido, Michalis Faloutsos, and
kc claffy, “Transport Layer Identification of P2P Traffic,” in
International Measurement Conference, Taormina, Italy, Oct.
2004.

[6] Daniel Stutzbach and Reza Rejaie, “Evaluating the Accuracy
of Captured Snapshots by Peer-to-Peer Crawlers,” in Passive
and Active Measurement Workshop, Boston, MA, Mar. 2005,
Extended Abstract.

[7] Subhabrata Sen and Jia Wang, “Analyzing Peer-To-Peer Traffic
Across Large Networks,” IEEE/ACM Transactions on Network-
ing, vol. 12, no. 2, pp. 219–232, Apr. 2004.

[8] Krishna P. Gummadi, Richard J. Dunn, Stefan Saroiu, Steven D.
Gribble, Henry M. Levy, and John Zahorjan, “Measurement,
Modeling, and Analysis of a Peer-to-Peer File-Sharing Work-
load,” in SOSP, 2003.

[9] clip2.com, “Gnutella: To the Bandwidth Barrier and Beyond,”
Nov. 2000.

[10] Matei Ripeanu, Ian Foster, and Adriana Iamnitchi, “Mapping
the Gnutella Network: Properties of Large-Scale Peer-to-Peer
Systems and Implications for System Design,” IEEE Internet
Computing Journal, vol. 6, no. 1, 2002.

[11] Daniel Stutzbach and Reza Rejaie, “Characterizing Two-Tier
Overlay Topologies in Modern P2P File-Sharing Systems,” Tech.
Rep. CIS-TR-2005-01, University of Oregon, Eugene, OR, Feb.
2005.

[12] “slyck.com,” http://www.slyck.com, 2005.
[13] Anurag Singla and Christopher Rohrs, “Ultrapeers: Another Step

Towards Gnutella Scalability,” Gnutella Developer’s Forum, Nov.
2002.

[14] Lime Wire LLC, “Crawler Compatability,” Gnutella Developer’s
Forum, Jan. 2003.


