Characterization of P2P Systems
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1 Introduction

Understanding existing systems and devising new P2P tggbsirelies on having
access to representative models derived from empiricargbtons of existing sys-
tems. However, the large and dynamic nature of P2P systeksswapturing accu-
rate measurements challenging. Because there is no cexgaditory, data must be
gathered from the peers who appear and depart as usersstagtinthe P2P appli-
cation. Even a simple task such as counting the number o gaarbe challenging
since each peer can only report its immediate overlay neighb

The first half of this chapter surveys techniques for measguattributes of
P2P systems as well as characterizations derived from thkcation of those
techniques. The second half explores two measurementitpemin detail—
crawling and sampling—and demonstrates the importancealafating measure-
ment methodology.

Systematically tackling the problem of characterizing R¥Btems requires a
structured organization of the different components. Atrost basic level, a P2P
system consists of a set of connected peers. We can viewslaggeaph with the
peers as vertices and the connections as edges. One furtdhwayto divide the
problem space is intproperties of the peers versusproperties of the way peers are
connected. Another fundamental division is examining the way the syt versus
the way the systeravolves. In some sense, any property may change with time and
could be viewed as system evolution. We use the term “statiggsties” to refer to
properties that can be measured at a particular moment eaimd modeled with a
static model (e.g., peer degree), and the term “dynamicgptigs” to refer to proper-
ties that are fundamentally dynamic in nature (e.g., sadeitgth). Table 1 presents
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an overview of several interesting properties categorimeathether they are static
or dynamic, and whether they are peer properties or comnitgqiroperties.

2 Measurement Techniques

Empirical P2P studies employ one of five basic techniquet) etiering a different
view with certain advantages and disadvantages:

Passive Monitoring Eavesdrop on P2P sessions passing through a router.
Participate: Instrument P2P software and allow it to run in its usual nenn
Crawl: Walk the P2P network, capturing information from each peer
Sample Select a subset of the peers in the network.

Centralize: Rely on logs maintained by a central server.

Table 2 summarizes the peer-reviewed studies in each cgtegd lists the
particular systems they examine. Studies which intercapd tiave typically fo-
cused on Kazaa, which was one of the most popular peer-tospstems. Saroiet
al. [41] show that in 2002 Kazaa traffic was between one and twersrof magni-

| [[Peer Properties | Connectivity Properties |
Static PropertiegAvailable resources (e.g., files) |Degree distribution
Geographic location Clustering coefficient
Shortest path lengths
Resiliency
Dynamic PropertiegSession length Stable core
Uptime Search efficiency
Remaining uptime Search reliability
Inter-arrival interval
Arrival rate

Table 1: Groups of properties

Intercept Participate Crawl Sample Centralize
[37] (B.D,G,2) [17] (G) [8] (G) [71(N,G) [[18] (B)
[14] (2) [21] (G) [3] (G) [42] (N,G) ([38](B)
[23] (2) [22] (G) [40] (G) [4] (O) [15] (B)
[24] (2) [35] (G) [46] (G,K,B) |[11](D) [51] (*)
[41] (2,G) [44] (G) [48] (G) [13] (S)
[43] (2,G,%) [2] (G) [45] (K)
[20] (B,D,G,Z,N,*) [10] (B)

[27]1 (2)

[28] (2)

Table 2: File sharing measurement studies, grouped by techniguesy$tem un-
der study is shown in parenthesis. B=BitTorrent, D=eDonk&90, G=Gnutella,
K=Kad, N=Napster, S=Skype, O=Overnet, Z=Kazaa, *=Mismatlous



Characterization of P2P Systems 3

tude larger than Gnutella traffic. However, others studdes to focus on Gnutella,
which has several open source implementations availaldlepan protocol spec-
ifications. Other popular file-sharing networks such eDgnk@00, Overnet, and
Kad remain largely unstudied. Each of the different measer# techniques has
different strengths and weaknesses, explained in detaivbe

2.1 Passive Monitoring

Monitoring peer-to-peer traffic at a gateway router prosideseful information
about dynamic peer properties such as the types and sizéssdiding transferred.
It also provides a limited amount of information about dym@oonnectivity proper-
ties such as how long peers remain connected. Howeverypasshitoring suffers
from three fundamental limitations, described below.

First, because it looks at only a cross-section of netwafitr usage patterns
may not be representative of the overall user populatioosekample, two of the
most detailed studies of this type [14, 41] were both coneliiet the University of
Washington (UW). Because the University has exceptionaditvédth capacity and
includes an exceptional number of young people, their measents may capture
different usage characteristics than, for example, a &jgiome broadband user.
This limitation may be somewhat overcome by comparing ssithken from dif-
ferent vantage points. One study [43] overcomes the sivigl@point limitation by
capturing data at several routers within a Tier-1 ISP.

The second limitation of passive monitoring is that it ontpyades information
about peers that are actively sending or receiving datagtine measurement win-
dow. Monitoring traffic cannot reveal any information abpeers which are up but
idle, and it is not possible to tell with certainty when theubas opened or closed
the application. These caveats aside, passive monitarpgjie useful for providing
insight in file sharing usage patterns.

The third limitation is the difficulty in classifying P2P ffec. Karagianniset
al. [20] show that the most common method of identifying P2Hitraby port num-
ber, is increasingly inaccurate.

The passive monitoring technique is predominantly usedtudysbulk data
movement such as HTTP-like file transfers and streamingraevhids relatively
easy to identify a flow at its beginning and count the bytesdierred.

2.2 Participate

Instrumenting open-source clients to log information oskdor later analysis fa-
cilitates the study of dynamic connectivity properties;tsas the length of time
connections remain open, bandwidth usage, and the fregueitit which search
requests are received. However, there is no guaranteelibatvations made at one
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vantage point are representative. Some studies employpheuintage points, but
the vantage points still typically share common charasties (e.g., exceptionally
high bandwidth Internet connections) and still may not lresentative.

2.3 Cram

A crawler is a program which walks a peer-to-peer networkingsevery known
peer for a list of its neighbors to iteratively explore theiengraph, similar to
the way a web-spider operates. Crawling is the only tectefqucapturing a full
snapshot of the topology, needed for graph analysis and-ttegen simulation.
However, accurately capturing the whole topology is trigkgrticularly for large
networks that have a rapidly changing population of milliaf peers. All crawlers
capture a distorted picture of the topology because thelaggachanges as the
crawler runs.

2.4 Sample

Several studies gather data by sampling a set of peers in mrdéudy static peer
properties, such as link bandwidth and shared files. By samfihe set of peers
at regular intervals, studies may also examine dynamic jpexgrerties such as the
session length distribution. To locate the initial set oése researchers have used
techniques such as a partial crawl [4,11, 13, 42], issuiagceequeries for common
search terms [7,42], and instrumenting a participating pée One drawback of
sampling is that it is difficult to guarantee that the inisal of peers are represen-
tative. Additionally, when studying dynamic propertiesngpling implicitly gathers
more data from peers who are present for a larger portioneofrtbasurement win-
dow.

2.5 Centralize

The final measurement technique is to use logs from a cerdgthtiource. Due to
the decentralized nature of peer-to-peer networks, tlygiedlly is no centralized
source. However, BitTorrent uses a centralized rendezvoins called aracker that
records peer arrivals, peer departures, and limited irdition about their download
progress.
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2.6 Summary

Measurement techniques for gathering data about the epecftpeer-to-peer sys-
tems, summarized in Table 3, each have their advantagessadVdntages.

| TechniqugAdvantages | Disadvantages |

Passive monitoringProvides information about traffic |May not be representative
Omits idle peers
Omits traffic on non-standard ports

Participat¢Provides information about dynanpMay not be representative

connectivity
Crawl|Captures the entire topology Doesn't scale
Unbiased May have significant distortion
SamplgCaptures peer properties Haphazard sampling often unrepfe-

Unbiased techniques available sentative
Dynamic properties inherently biaged
toward long-lived peers
CentralizgUnbiased Only available if system has a central-
ized component

Table 3: Summary of existing measurement techniques

3 What to Measure

The following subsections summarize other empirical gisidif peer-to-peer sys-
tems, discuss their main findings, and identify importaeaarwhich remain un-
studied.

3.1 Static Peer Properties

Saroiu, Gummadi, and Gribble provide an extensive andinétive study, primar-
ily of static peer properties [42]. While earlier work cohaa of peers as equal par-
ticipants, their landmark study demonstrates that in practot all peers contribute
equally to peer-to-peer systems. Using data collected fBomtella and Napster in
May 2001, their observations show a heavy skew in the digdtahs of bottleneck
bandwidth, latency, availability, and the number of shdiled for each host, with
each of these qualities varying by many orders of magnitude.

Additionally, they found correlations between severalted properties. Bottle-
neck bandwidth and the number of uploads have a positiveledion, while bottle-
neck bandwidth and the number of downloads have a negativelaton. In other
words, peers with high bandwidth tend to be uploading maas fivhile peers with
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low bandwidth have to spend more time downloading. Interght no significant
correlation exists between bottleneck bandwidth and tmelrar of files stored on a
peer.

In addition to the sweeping work of Saroétial. [42], several studies focus on
examining the files shared by peers [2,7, 11, 49]. A few resudtve consistently
appeared in these studies. First, peers vary dramaticatlyei number of files that
they share, with a relatively small percentage of peersioffehe majority of avail-
able files. In addition, a large fraction of peers share na fieall (25% in [42],
two-thirds in [2,11], 11-13% in [49]). Second, the populadf stored files in file-
sharing systems is heavily skewed; a few files are enormaqaegylar, while for
most files only a few peers have a copy. Fessa@al. [11] found that it may be
described by a Zipf distribution. However, Chu, Labonte] aavine [7] found that
the most popular files were relatively equal in popularih@ugh less popular files
still had a Zipf-like distribution.

Studies also agree that the vast majority of files and byteeshare in audio or
video files, leading to the distribution of file sizes exhifgta multi-modal behavior.
Each studies shows that a plurality of files are audio file84{48[11], 67% in [49],
76% in [7]). However, video files make up a disproportionataige portion of the
bytes stored by peers (67% in [11], 53% in [49], 21% in [7]).

Fessantt al. [11] took the additional step of examining correlationshe files
shared by peers. Their results show that users have nagcierests, with 30%
of files having a correlation of at least 60% with at least otfepfile. Of peers
with at least 10 files in common, they found that 80% have aitleae more file in
common. Likewise, of peers with at least 50 files in commorthiir data nearly
100% have at least one more file in common.

3.2 Dynamic Peer Properties

Most dynamic peer properties are tied to how long and howueatly peers are
active. Session length is the length of time a peer is continuously connected to a
given peer-to-peer network, from when it arrives until ipdes. Uptimeis the length
of time a peer that is still present has been conned®ehaining uptime is how
much longer until an active peer depattdetimeis the duration from the first time a
peer connects to a peer-to-peer network—ever—to the vetyitae it disconnects.
Availability is the percentage of time that a peer and its resources anecteal to
the peer-to-peer network within some windd»owntime is the duration between
two successive sessions. Finally, iater-arrival interval is the duration from the
arrival of one peer until the arrival of the next peer. Thesggslength, uptime, and
remaining uptime are closely related, as shown in Figureht. Jopularity of file
transfers is another dynamic peer property, which we exaseparately.
Generally, the most important distribution for simulatiand analysis is the
session-length distribution, as it fully determines thdimp and remaining up-
time distributions and strongly influences the availapilithe median session length
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Fig. 1: lllustration of the relationship between session lengptinue, and remaining
uptime

specifies how much churn a protocol must cope with, and theesbithe distribu-
tion determines whether some peers are dramatically maipdesthan others.

Due to its importance, several studies examine the sessiath distribution.
Rhea, Geels, and Kubiatowicz [39] summarize these studseshown in Table 4
which is adapted from their paper and updated with our mareniestudy [46].

While the median differs dramatically, all the studies &gteat the session
lengths are heavily skewed: many sessions are short, winife session are very
long. Several studies draw the conclusion that sessiontencan be modeled
with a power-law (or Pareto) distribution [5, 13, 26] or esihiheavy-tailed behav-
ior [13, 14, 43]. Chu, Labonte, and Levine [7] fit session kasgo a log-quadratic
distribution, which can be viewed as a second-order vanaif the Pareto distribu-
tion. Only one of the earlier studies [5] provide an analgsid fit to support their
conclusion. However, Leonard, Rai, and Loguinov [25, pgs@jgest that the fit
given in [5] seems implausible and point out some possibldatmlogical errors.

Citation| Systems Observed Session Time
[42] Gnutella, Napste] 50% < 60 min.
[7] Gnutella, Napstef 31%< 10 min.
[43] Kazaa 50% < 1 min.
[4] Overnet 50% < 60 min.
[14] Kazaa 50%< 2.4 min.
[46] Gnutella, Kad | 50%< 15 min.—-1 hr.
[46] BitTorrent 50% < 2 min.—30 min.

Table 4: Observed session lengths in various peer-to-peer file repastems.
Adapted from [39].
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In our more recent study [46], we examine several common odetlogical prob-
lems that introduce bias into studies of peer churn and exadsata from Gnutella,
Kad, and BitTorrent. The session lengths we observed wexdliiskewed, but did
not agree with a power-law or Pareto distribution. Howetrery could be described
with a Weibull distribution.

In BitTorrent, the availability of high-quality trackerds facilitates the study of
peer dynamics. Prior studies of BitTorrent [18, 38] showt thession lengths are
heavily skewed. However, they do not attempt to create a hixaded on the data.
A surprising discovery shown by Izat al. [18] is that many peers (81% in their
trace) depart before downloading the entire file, while pegno do complete the
download linger for more than six hours on average.

While most studies of peer dynamics focus on session leBdjiligwan, Savage,
and Voelker [4] provide a study of peer availability in Ovetrduring January 2003.
However, they find that the distribution of availability \es dramatically with the
size of the measurement window, due to the significant sacif hosts who appear
briefly and only once.

3.2.1 Files Transfers

Another class of dynamic peer properties is related to ths filat peers are actively
transferring, which in some sense is the derivative of tkes fileing stored on each
peer (discussed above under Static Peer Properties). Diperngies of files being
transferred are most often studied using passive mongeatigateway routers. Two
of the most detailed studies of files being transfered [1wEre both conducted
at the University of Washington (UW). The first study, [41dcfises on comparing
HTTP requests with P2P requests, demonstrating that PZPnosee than twice
as much bandwidth as the web on their network. Although tleemd a smaller
number of hosts are involved in the P2P traffic, each objeatdsrs of magnitude
larger. Furthermore, they show that a majority of the P2/i¢raame from a few
large video files. Their second study, [14], more closelyneéxes the popularity
and properties of different P2P objects. The popularityifiecent objects did not
match a Zipf distribution, in contrast to the Zipf distribn of popularity observed
for Web objects. The authors suggest this may be due to ththfstdin P2P systems,
users typically download an object at most once, while Wedyaimay return to a
website many times. Instead, they found that unpopularctbjgppear Zipf-like,
while popular objects are relatively equal in popularityatohing the results for
stored files seen in [7].

Leibowitz et al. [23, 24] provide measurements from an Israeli Internet iBerv
Provider (ISP), and compare their findings with the UW stadieterestingly, they
find that while the UW is an overall provider of P2P conteng, iP they study is an
overall consumer of P2P content. Their studies give pdaidacus to the idea of
caching P2P content. In [23], they implement a transpar@dt@B cache yielding
a 67% bandwidth savings.
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3.3 Static Connectivity Properties

In 2000, a company called “Clip2” developed a Gnutella ceavend published
their results on the web. Although not validated by peerengytheir analysis and
topology captures have been widely used in simulation studi improvements for
Gnutella-like networks [1, 19, 29-31]. In [8], Clip2 presemanalysis of snapshots
they captured between June and August of 2000. Using thaivier which took
around an hour to survey the entire topology, they gathemegshots containing
between 1,000 and 8,000 peers.

Their work suggests that the Gnutella network has a powedkgree distribu-
tion, based on plotting the degree distribution of theirpsfets on a log-log scale
and demonstrating a linear fit. Adamétal. [1] repeat this analysis on similar data
provided by Clip2. However, neither study considers aliéwe models of the de-
gree distribution. Several later studies [9,12,19, 34r&l9]on the power-law model,
simulating Gnutella using random power-law topologies.etal. [33] show that
power-law networks exhibit poorer performance than otyyees$ of random graphs.

Ripeanu, Foster, and lamnitchi [40] implemented a crawiersse it to examine
properties of the Gnutella overlay topology. Their cravdses a client-server archi-
tecture running on roughly 50 computers to crawl a 30,00Gnu#twork in a few
hours. Their crawls were conducted in November 2000 thrddiay2001. The size
of the network grew from 2,063 to 48,195 peers over that tifiney performed all-
pairs shortest-path computations and plotted the digtoibwof path lengths. 95%
of shortest-paths are 7 hops or less, with most shortebsgaing 4 or 5 hops
long. They repeat the analysis of [8] and [1] by plotting thegbe distribution in
log-log scale. In their November snapshot, the degreeildiston appears linear on
the log-log plot, suggesting a power-law distribution. iFidarch 2001 snapshot
is different. Low-degree nodes are approximately equailyimon, though among
high-degree nodes the distribution still appears lineaheriog-log plot.

Given that their crawls take a few hours, and peer uptimes Ineajjst a few
minutes [7, 14, 43], it is very possible that these topolsgiee highly inaccurate,
leading to a drastically distorted picture of the network[48], we created a new
crawler, Cruiser, which can crawl the Gnutella network iaward 4 minutes. Later
in this chapter, we provide an overview of the design of @xdsand some of the
techniques we used to validate the accuracy of its snapgBotasneasurements of
Gnutella were not consistent with a power-law distributiorfact, they showed that
virtually all peers had a degree under 35.

3.4 Dynamic Connectivity Properties

In [48], we explore how heavily skewed session lengths imibeethe topological
structure. We found that long-lived peers gradually find anether and form a
stable “core” for the peer-to-peer network. By remaininghia system for a long
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time, these peers have more opportunity to find one anothere @ound, these
connections remain until one of the peers leave.

When a user starts their P2P application, the applicatiost rdiscover other
peers to form connections with. This initial discovery mss is calledootstrap-
ping. Karbhariet al. [21] provide a comparative study of the bootstrapping mecha
nisms of several Gnutella implementations.

Sripanidkulchai presented one of the first studies of setehs in a P2P net-
work [44], demonstrating that queries follow a Zipf distriton, except for the most
popular queries which are of roughly equal popularity (fmto the distributions of
files stored and file transfers). The fact that popular qsenie much more common
than unpopular queries suggests caching query results enbgrieficial [35, 44].

Klemm et al. [22] provide a comprehensive analysis of queries, breattovgn
the number of queries observed by time of day and geogrdpkian. It includes
distributions for the number of sessions that generateiegiethe time until the
first queries, the query inter-arrival time, and the lengthhe session. In short,
it provides a framework for generating a synthetic querykhaad as seen from a
single peer.

3.5 Summary

Peer-to-peer systems have been a popular topic for emsticdies. Existing stud-
ies cover properties of stored files, file transfers, andcketarms in great detail.
Additionally, Saroiu, Gummadi, and Gribble [42] provide antprehensive study
of static peer properties. However, these measuremeriesthdve been rather ad-
hoc, gathering data in the most convenient manner withdtitaty examining their
methodology for measurement bias. While an ad-hoc apprisasften suitable for
first-order approximations (e.g., “file popularity is hdggkewed”), it is generally
not appropriate for making precise conclusions (e.g.,siseslengths are power-
law”). One of the largest gaps in the existing work is the digmament and validation
of high-fidelity measurement tools for peer-to-peer neksol he remainder of this
chapter describes two tools for gathering highly accuratasarements.

4 Cruiser: a fast P2P crawler

The global state of a peer-to-peer system is distributedngnadl the peers. Ex-
ploring the graph and capturing the state of each peer eapthe global state. A
crawler is a tool that captures global state in this way. Since théesyshanges
as the crawler explores, the picturedistorted, much like a photograph capturing
rapid motion. Therefore, crawl speed is important. Theefagte crawler runs, the
less distortion. Crawlers have most often been used foudagtsnapshots of the
overlay topology as a graph, needed for studying many statioectivity proper-
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ties. Many studies [3, 8, 28, 40] take 30 to 120 minutes to tthe network and

capture a snapshot of the graph. However, many peers ar@empeesent for that
long [14, 39, 43]. This suggests existing crawlers are mochstow and may be
capturing very distorted snapshots. The accuracy of theggstots most likely has
not been previously addressed because it is challengingetsumne the distortion
without a perfect reference snapshot for comparison.

This section documents a fast crawler, cal@diser, that can capture complete
topologies in just a few minutes, introduces techniquesfsessing the accuracy
of snapshots, and shows that Cruiser may be used to capttueate snapshots.
Additional details may be found in [48]. We focus on captgrsnapshots of the
Gnutella topology, as Gnutella is one of the largest P2Reaystand has been the
target of most prior P2P crawlers, allowing us to make megfoircomparisons.
Although we focus on Gnutella, Cruiser uses a plug-in aechitre, allowing it to
crawl other P2P systems with the addition of an appropritaig-jn.

In order to crawl quickly, the design of Cruiser must overeoseveral chal-
lenges:

e It must make heavy use of parallelism to contact many peemnsl&ineously.
Managing so many connections in parallel can lead to CPUdettks requiring
a distributed architecture.

e Ifthe load is too great, Cruiser may lose dafBherefore, Cruiser must carefully
control the load by appropriately limiting the number of nentions. Since each
connection uses a variable amount of resources, this limét fme dynamic.

e Cruiser cannot afford to wait the minutes for a TCP connecgittempt to time-
out. Instead, the proper trade-off between timing out taoldu (which increases
distortion by losing data) and timing out too slowly (whicitieases distortion
by making the crawl slower) must be found empirically.

4.1 The Design of Cruiser

Our primary goal in the design of Cruiser is to minimize distm in captured
snapshots by maximizing the speed at which Cruiser exptbeegsverlay topology.
We employ several techniques and features to achieve thigrdgoal, as described
below.

4.1.1 Two-Tier Networks

Cruiser leverages the two-tier structure of modern P2P orésvby only crawling
ultrapeers. Since each leaf must be connected to an ultrdpiseapproach enables
us to capture all the nodes and links of the overlay by coimget relatively small

1 For example, connections may appear to time out if the CPtikoso great that received packets
spend too long in a queue before being processed.
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fraction of all peers. This strategy leads to a major reducf(around 85%) in the
duration of a crawl without any loss of information.

4.1.2 Distributed Architecture

Cruiser employs a master-slave architecture in order tieaeta high degree of
concurrency and to effectively utilize available resogroa multiple computers. A
master process coordinates multiple slave processesctteat mmdependent crawlers
and crawl disjoint portions of the network in parallel. Theves communicate with
the master using loose synchronization as follows. Eacledias an independent
gueue of addresses to contact, which the master fills. Eaeh dlains its queue by
guerying peers for their neighbors and reporting back vhighdata they've gathered.
The master extracts new addresses from the data and ustsfithibe queues. The
crawl terminates when all the queues are empty.

4.1.3 Asynchronous Communications

Each slave process crawls hundreds of peers in paralley @asipnchronous com-
munications. Cruiser implements an adaptive load managemechanism to en-
sure that slave processes remain busy but do not becomelwlered. This is im-

portant for the steady progress of the crawl especially wdifarent slave nodes
have heterogeneous processing capabilities. Toward tldiseach slave monitors
its CPU load and adjusts its maximum number of parallels eotions using an
additive-increase multiplicative-decrease (AIMD) aligfom similar to TCP’s con-

gestion control mechanism. In practice, each PC typicalhswith close to 1,000
parallel connections, contributing an additional spepdinearly three orders of
maghnitude, compared to using synchronous communicatasis [40]).

4.1.4 Appropriate Timeouts

When peers are unresponsive, waiting for TCP to timeout aredup attempting to
connect takes a long time. On our systems, a full TCP timemahtunresponsive
address takes more than 3 minutes. While this is suitablméoy interactive and
automated applications, one of our primary design goatsntake crawls as quick
as possible. We conducted an evaluation of the cost-vérsusfit tradeoff of differ-
ent timeout values for crawling. As a function of the timelaumngth, Figure 2 shows
the duration of the crawl and the percentage of peers tha wareachable. We see
that while very low timeouts (less than 10 seconds) resu#t dramatic increase
in the number of timeouts, there are diminishing returnsuing longer timeout
values, while the crawl length (and thus distortion) comisi to increase. In other
words, if a peer has not responded after 10 seconds, it ikalylio ever respond.
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Therefore, we use a timeout of 10 seconds, providing aniadditspeedup of more
than a factor of two, compared to using full TCP timeouts.

4.2 Quantifying Snapshot Accuracy

One obvious metric to evaluate the performance of Cruisédragime it takes to
perform a crawl. However, the crawl duration doesn't revemal accurate the crawl
is; it only informs us if the crawl is more accurate than aeottrawl performed un-
der similar conditions. Snapshot accuracy can not be djremasured since there
is no reference snapshot for comparison. Therefore, we imdisectly quantify the
effect of crawling speed on snapshot accuracy.

To examine the impact of crawling speed on the accuracy dficegh snapshots,
we adjust the crawling speed (and thus the crawl duratio@rafser by changing
the number of parallel connections that each slave proegsspen. Using this tech-
nique, Cruiser can effectively emulate the behavior of jonesty reported crawlers
which have a lower degree of concurrency.

We introduce the following two metrics for evaluating a clawThe first metric,
edge distortion, examines the edges in the captured snapshot. For eaclcizhta
peerA, with neighbordNa, we examine each of its neighbds Na to see if they
likewise reported as their neighbor. If not, we have an inconsistency in thelgra
caused by the fact that the edge changed sometime betweglingraodeA and

100 —12
80 —10
—8
60—
—6
40
— - - L4
20— 5
Crawl Duration——
Timeouts---
0 \ \ \ \ \ 0
0 10 20 30 40 50 60

Timeout (seconds)

Fig. 2: Effects of the timeout length on crawl duration and snapshotpleteness

Crawl Duration (m)
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crawling nodeB. The edge distortion, then, is the fraction of edges thatraren-
sistent.

The second metrimode distortion, examines the peers present in two consec-
utive snapshots captured back-to-back. We denote the psdhe set¥; andVs.
Comparing these two back-to-back snapshots provideshnsitp how distorted
our picture of the network is. If Cruiser were instantly fastd captured perfect
snapshotsy; andV, would be identical. The greater the change that occurs while
Cruiser runs, the greater the difference betwéeandV,. We define the node dis-
tortion as%, whereV,AV; is the symmetric difference 6f; andVs (i.e., peers
in one set or the other, but not both). Note that wikiga- \», the node distortion is
0%, and whetv; andV, are completely disjoint the node distortion is 100%.

Figure 3 depicts peer and edge distortion as a function eflataration. This
figure demonstrates that the accuracy of snapshots desmetisé¢he duration of the
crawl, because the increased distortion reflects changie itopology that occur
while the crawler isrunning. Crawlers that take 1-2 hours (comparable to those in
earlier works) have a node distortion of 9%—15% and an edgfertion of 31%-—
48%, while at full speed Cruiser exhibits a node distortibordy 4% and an edge
distortion of only 13%.

100
Edge Distortion——
Node Distortion §) -><-
80—
60—
40—
20—
0 \ \ \ \ | \
0 20 40 60 80 100 120

Crawl Duration (minutes)

Fig. 3: Effect of crawl speed on the accuracy of captured snapshots
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5 Sampling

While fast, Cruiser unavoidably tak€X|V|) time, which means it may still be too
slow to capture accurate snapshots of system with a verg lgogulation ) or
when the per-peer state is time-consuming to collect. Foh siases, we need a
mechanism to collect unbiased samples, which is the toptieeothis chapter.

5.1 Sampling with Dynamics

We develop a formal and general model of a P2P system as flldwe take
an instantaneous snapshot of the system at timnee can view the overlay as a
graphG(V, E) with the peers as vertices and connections between theaeedges.
Extending this notion, we incorporate the dynamic aspecti®ying the system as
an infinite set of time-indexed graphs, = G(M, E;). The most common approach
for sampling from this set of graphs is to define a measuremietow, [tp, to + A],
and select peers uniformly at random from the set of peersavb@resent at any
time during the windowVy, ¢, 14 = UEOJIOAVL Thus, it does not distinguish between
occurrences of the same peer at different times.

This approach is appropriate if peer session lengths arenexyially distributed
(i.e., memoryless). However, existing measurement stdi 38,42,46] show ses-
sion lengths are heavily skewed, with many peers being ptésejust a short time
(a few minutes) while other peers remain in the system forrg lang time (i.e.,
longer thanA). As a consequence, @sincreases, the s&t, .4 includes an in-
creasingly large fraction of short-lived peers.

A simple example may be illustrative. Suppose we wish to ndeste number of
files shared by peers. In this example system, half the peengpeall the time and
have many files, while the other peers remain for around 1 miand are immedi-
ately replaced by new short-lived peers who have few fileg. fEshnique used by
most studies would observe the system for a long tiyeafhd incorrectly conclude
that most of the peers in the system have very few files. Maetieir results will
depend on how long they observe the system. The longer theurezaent window,
the larger the fraction of observed peers with few files.

One fundamental problem of this approach is that it focusesamplingpeers
instead ofpeer properties. It selects each sampled vertex at most once. However,
the property at the vertex may change with time. Our goal lshoat be to select
a vertexv; € UEOJIOAVt, but rather to sample the propertywaiat a particular instant
t. Thus, we distinguish between occurrences of the same pekiferent times:
samplesvi; andv;y gathered at distinct timets# t' are viewed as distinct, even
when they come from the same peBhe key difference is that it must be possible
to sample from the same peer more than once, at different pointsin time. Using the
formulationv;; € 4, t € [to,to+ 4], the sampling technique will not be biased by the
dynamics of peer behavior, because the sample set is decbiupm peer session
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lengths. To our knowledge, no prior P2P measurement stueligiag on sampling
make this distinction.

Returning to our simple example, our approach will corsestlect long-lived
peers half the time and short-lived peers half the time. Whersamples are exam-
ined, they will show that half of the peers in the system atgimgn moment have
many files while half of the peers have few files, which is elyamtbrrect.

If the measurement windowd is sufficiently small, such that the distribution of
the property under consideration does not change signifjcdnring the measure-
ment window, then we may relax the constraint of choosingiformly at random
from [to,to+ 4].

We still have the significant problem of selecting a peer amifly at random
from those present at a particular time. We begin to addhésgtoblem in the next
section.

Erdos—Rényi Gnutella Watts—Strogatz Barabasi—Albert
Breadth-First Search .84-104 2.73.10% 47373 2.77-10°8
Random Walk 318-10% 157-10%  7.64°5 2.84.10°3
Metropolis—Hastings 97-10°° 579.-10°  6.08° 5.22-10°°

Table 5: Kolmogorov-Smirnov test statistic for techniques ovetistgraphs. Values
above 107-10“ lie in the rejection region at the 5% level.

5.2 Sampling from Static Graphs

We now turn our attention to topological causes of bias. Tda#his end, we mo-
mentarily set aside the temporal issues by assuming a,stetehanging graph.
The selection process begins with knowledge of one peetefjeand progressively
queries peers for a list of neighbors. The goal is to seleetgpeniformly at ran-
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Histogram (# of peers)
B
2 3 3
© © © o

2000 Oracle, MRW —___

RW

T/

00 50 500 00 500 1000 1500 500 100
Number of times sampled Number of times sampled Number of times sampled Number of times sampled
(a) Erdos—Rényi (b) Gnutella (c) Watts—Strogatz (d) Barabasi—Albert
(small world)  (power-law)

RW, BFS

Fig. 4: Bias of different sampling techniques; after collectindV| samples. The
figures show how many peengéxis) were selectextimes.
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dom. In any graph-exploration problem, we have a set ofadgiteers (vertices) and
a front of unexplored neighboring peers. There are two wayshich algorithms
differ: (i) how to chose the next peer to explore, giyiwhich subset of the ex-
plored peers to select as samples. Prior studies use simgaldth-first or depth-first
approaches to explore the graph and select all explored.pékese approaches
suffer from several problems:

e The discovered peers are correlated by their neighboiopkitip.

e Peers with higher degree are more likely to be selected.

e Because they never visit the same peer twice, they will thtoe bias when used
in a dynamic setting as described in Section 5.1.

5.2.1 Random Walks

A better candidate solution is the random walk, which haslesgensively studied
in the graph theory literature (for an excellent survey ¥8)[ We briefly sum-
marize the key terminology and results relevant to sampliing transition matrix
P(x,y) describes the probability of transitioning to pgef the walk is currently at
peerx:

—L __ yis a neighbor of x

— J degreéx
POcY) = {O e otherwise
If the vectorv describes the probability of currently being at each péemn the
vectorV = vP describes the probability after taking one additional stekewise,
vP" describes the probability after takingteps. As long as the graph is connected
and not bipartite, the probability of being at any particulade,x, converges to a
stationary distribution:

0 = iy )~ 9020
In other words, if we select a peer as a sample ewastgps, for sufficiently large,
we have the following good properties:

e The information stored in the starting vecterjs lost, through the repeated se-
lection of random neighbors. Therefore, there is no calitgidetween selected
peers. Alternately, we may start many walks in parallel.ithex cases, after
steps, the selection is independent of the origin.

e While the stationary distributiori(x), is biased towards peers with high degree,
the bias is precisely known, allowing us to correct it.

¢ Random walks may visit the same peer twice, which lends ibsster to a dy-
namic setting as described in Section 5.1.

In practice,r need not be exceptionally large. For graphs where the edgesa
strong random component (e.g., small-world graphs suckastp-peer networks),
it is sufficient that the number of steps exceed the log of theufation size, i.e.,
r > O(log|V]).
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5.2.2 Adjusting for degree bias

To correct the bias towards high degree peers, we make ude d¥ietropolis—
Hastings method for Markov Chains. Random walks on a graplaapecial case

of Markov Chains. In a regular random walk, the transitiortnmeP(x,y) leads to
the stationary distributiorn(x), as described above. We would like to choose a new
transition matrixQ(x,y), to produce a different stationary distributir(x). Specif-
ically, we desireu(x) to be the uniform distribution so that all peers are equally
likely to be at the end of the walk. Metropolis—Hastings [6,36] provides us with
the desired)(x,y):

e

in [ LO)PyX
Qxy) = { P(x,y) min ( & PIEEE ) if X#Y,
1- zz;éXQ(X? ) if x= y
Equivalently, to take a step from pegr select a neighboy of x as normal
(i.e., with probabilityP(x,y)). Then, with probability m|r( YPYX) 1), accept the

X)P(xy)’
move. Otherwise, return to(i.e., with probability 1— Z#XQ(X 2)).

To collect uniform samples, we ha\ﬁ% =1, so the move-acceptance probabil-

ity becomes:
- HY)PY,X) > - <degreé><) >
min{ ————= 1) =min| ———,1
(u(X)P(x, y) degregy)
Therefore, our algorithm for selecting the next step fromsgeeix is as follows:

Select a neighboy of x uniformly at random.

Queryy for a list of its neighbors, to determine its degree.

Generate a random valug, uniformly between 0 and 1.
degreéx) .,

If p< degreey)’ y|§ the next step.

e Otherwise, remain atas the next step.

We call this the Metropolized Random Walk (MRW). Qualitaliy the effect is to

suppress the rate of transition to peers of higher degrseltireg in selecting each

peer with equal probability.

5.2.3 Evaluation

Although [6] provides a proof of correctness for the MetriipeHastings method,
to ensure the correctness of our implementation we condatti@ions through

simulation over static graphs. This additionally provitlesopportunity to compare
MRW with conventional techniques such as Breadth-First@eéBFS) or naive

random walks (RW) with no adjustments for degree bias.

To evaluate a technique, we use it to collect a large numbsawiple vertices
from a graph, then perform a goodness-of-fit test againstitiiflerm distribution.
For Breadth-First Search, we simulate typical usage byingritto gather a batch of
1,000 peers. When one batch of samples is collected, thegsdgreset and begins
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anew at a different starting point. To ensure robustness wispect to different
kinds of connectivity structures, we examine each tectenimyer several types of
graphs as follows:

e Erdos—Renyi: The simplest variety of random graphs

e Watts—Strogatz: “Small world” graphs with high clustering and low path
lengths

e Barabasi-Albert: Graphs with extreme degree distributions, also known as
power-law or scale-free graphs

e Gnutella: Snapshots of the Gnutella ultrapeer topology, capturediirearlier
work [48]

To make the results more comparable, the number of vertjges=(161 680)
and edges|E| = 1,946,596) in each graph are approximately the s&riiable 5
presents the results of the goodness-of-fit tests afteeatoiy 1000 |V| samples,
showing that Metropolis—Hastings appears to generat@umitamples over each
type of graph, while the other techniques fail to do so by aawitargin.

Figure 4 explores the results visually, by plotting the nemiif times each peer
is selected. If we seledt- V| samples, the typical node should be sele&téthes,
with other nodes being selected closekttimes approximately following a nor-
mal distribution with varianc&.2 We usedk = 1,000 samples. We also include an
“Oracle” technique, which selects peers uniformly at randgsing global infor-
mation. The Metropolis—Hastings results are virtuallyntieal to the Oracle, while
the other techniques select many peers much more and muhhkesk times.
In the Gnutella, Watts—Strogatz, and Barabasi—AlbenlgsaBreadth-First Search
exhibits a few vertices that are selected a large numbenwgi¢- 10,000). The
(not-adjusted) Random Walk (RW) method has similarly gelk@ few vertices
an exceptionally large number of times in the Gnutella anchBasi—Albert mod-
els. The Oracle and MRW, by contrast, did not select any xerere than around
1,300 times.

In summary, the Metropolis—Hastings method selects peefsrmly at random
from a static graph. The next section examines the additimraplexities when
selecting from a dynamic graph, introduces appropriateifications, and evaluates
the algorithm’s performance.

5.3 Empirical Results

In addition to the simulator version, we have implementesd MRWB algorithm
for sampling from real peer-to-peer networks into a todkechbn-sampler . The

2 Erdos—Rényi graphs are generated based on some propatiiiat any edge may exist. We set
p= % so that there will be close | edges, though the exact value may vary slightly.
The Watts—Strogatz model require thE{ be evenly divisible byV|, so in that model we use
|E| = 1,940 160.

3 Based on the normal approximation of a binomial distributidth p = ‘vl‘ andn=k|V|.
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following subsections briefly describe the implementatind usage abn-sampler
and present empirical experiments to validate its accuracy

5.3.1 lon-Sampler

Theion-sampler  tool uses a modular design that accepts plug-ins for new peer
to-peer system$ A plug-in can be written for any peer-to-peer system thatves|
querying a peer for a list of its neighbors. Tha-sampler  tool hands IP-
address:port pairs to the plug-in, which later returns tagisneighbors or signals
that a timeout occurred. THen-sampler  tool is responsible for managing the
walks. It outputs the samples to standard output, wherertieybe easily read by
another tool that collects the actual measurements. Fongeaion-sampler

could be used with existing measurement tools for measbangwidth to estimate
the distribution of access link bandwidth in a peer-to-pgetem. Listing 1 shows
an example of usingpn-sampler  to sample peers from Gnutella.

5.3.2 Empirical Validation

The topology snapshots from Cruiser provide a point of efee for the degree
distribution to evaluate the accuracyioh-sampler  empirically. By capturing
every peer, Cruiser is immune to sampling difficulties. Hegrebecause the net-
work changes as Cruiser operates, its snapshots are glifistibrted. In particular,
peers arriving near the start of the crawl are likely to hauenfl additional neigh-
bors by the time Cruiser contacts them. Therefore, we in&lyt expect a slight
upward bias in Cruiser’'s observed degree distribution.tRi reason, we would
not expect a perfect match between Cruiser and samplingf,thetsampling is un-
biased we still expect them to be very close. We can view thBE@rsion of the
degree distribution captured by Cruiser as a close uppandon the true degree
distribution.

Figure 5 presents a comparison of the degree distributioeamthable ultrapeers
in Gnutella, as seen by Cruiser and by the sampling tool (caqygt approximately
1,000 samples with = 25 hops). It also includes the results of a short craal,
sampling technique commonly used in earlier studies (g18]). We interleaved
running these measurement tools to minimize the changeeirsyhtem between
measurements of different tools, in order to make theirltesomparable.

Examining Figure 5, we see that the full crawl and samplirgiritiutions are
quite similar. The sampling tool finds slightly more peerthwower degree, com-
pared to the full crawl, in accordance with our expectatidescribed above. We

4 In fact, it uses the same plug-in architecture as our eatieavy-weight tool, Cruiser, which

exhaustively crawls peer-to-peer systems to capture agyanapshots.

5 A “short crawl” is a general term for a progressive explamtdf a portion of the graph, such
as by using a breadth-first or depth-first search. In this,aaseandomly select the next peer to
explore.



Characterization of P2P Systems 21

examined several such pairs of crawling and sampling datécamd the same pat-
tern in each pair. By comparison, the short crawl exhibitslzsgantial bias towards
high degree peers relative to both the full crawl and sargplin

5.3.3 Efficiency

Having demonstrated the validity of the MRWB technique, vesvrturn our at-
tention to its efficiency. Performing the walk requiresr queries, whera is the
desired number of samples ands the length of the walk in hops. Hfis too low,
significant bias may be introduced rlfs too high, it should not introduce bias, but
is less efficient. From graph theory, we expect to requireO(log|V|) for an ordi-
nary random walk. Based on our empirical experiments in,[4/€] conservatively

bash$ ./fion-sampler gnutella --hops 25 -n 10
10.8.65.171:6348
10.199.20.183:5260
10.8.45.103:34717
10.21.0.29:6346
10.32.170.200:6346
10.201.162.49:30274
10.222.183.129:47272
10.245.64.85:6348
10.79.198.44:36520
10.216.54.169:44380
bash$

Listing 1: Example usage of themn-sampler  tool. We specify that we want
to use the Gnutella plug-in, each walk should take 25 hop$wawould like 10
samples. The tool then prints out 10 IP-address:port pafehave changed the first
octet of each result to “10” for privacy reasons.

100 v e
80
£ 60
a
8 40 +
Short Crawl (1000 peers}——
20 Full Crawl (422,808 peers)------
0 Sampling (971 peers)--------
L e B B L B —

0 5 10 15 20 25 30 35 40
Degree

Fig. 5: Comparison of degree distributions observed from samplargus exhaus-
tively crawling all peers
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regard a choice af = 25 as a safe walk length for Gnutella. Choosing 25, we
can collect 1,000 samples by querying 25,000 peers, overdar of magnitude
in savings compared with performing a full crawl which muehtact more than
400,000.

6 Summary and Future Work

The first half of this chapter surveys techniques for meaguattributes of P2P sys-
tems as well as characterizations derived from the appitatf those techniques.
The second half explores two measurement techniques inl-detawling and

sampling—and demonstrates the importance of validatingserement method-

ology.
In our ongoing work, we are exploring different techniquesnprove the ac-

curacy and efficiency of the crawling and sampling technigresented here (and
earlier presented in [47,48]). Additionally, we are exaimjiarge-scale traffic mon-
itoring over Distributed Hash Tables (DHTS).
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