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1 Introduction

Understanding existing systems and devising new P2P techniques relies on having
access to representative models derived from empirical observations of existing sys-
tems. However, the large and dynamic nature of P2P systems makes capturing accu-
rate measurements challenging. Because there is no centralrepository, data must be
gathered from the peers who appear and depart as users start and exit the P2P appli-
cation. Even a simple task such as counting the number of peers can be challenging
since each peer can only report its immediate overlay neighbors.

The first half of this chapter surveys techniques for measuring attributes of
P2P systems as well as characterizations derived from the application of those
techniques. The second half explores two measurement techniques in detail—
crawling and sampling—and demonstrates the importance of validating measure-
ment methodology.

Systematically tackling the problem of characterizing P2Psystems requires a
structured organization of the different components. At the most basic level, a P2P
system consists of a set of connected peers. We can view this as a graph with the
peers as vertices and the connections as edges. One fundamental way to divide the
problem space is intoproperties of the peers versusproperties of the way peers are
connected. Another fundamental division is examining the way the systemis versus
the way the systemevolves. In some sense, any property may change with time and
could be viewed as system evolution. We use the term “static properties” to refer to
properties that can be measured at a particular moment in time and modeled with a
static model (e.g., peer degree), and the term “dynamic properties” to refer to proper-
ties that are fundamentally dynamic in nature (e.g., session length). Table 1 presents
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an overview of several interesting properties categorizedby whether they are static
or dynamic, and whether they are peer properties or connectivity properties.

2 Measurement Techniques

Empirical P2P studies employ one of five basic techniques, each offering a different
view with certain advantages and disadvantages:

• Passive Monitoring: Eavesdrop on P2P sessions passing through a router.
• Participate: Instrument P2P software and allow it to run in its usual manner.
• Crawl : Walk the P2P network, capturing information from each peer.
• Sample: Select a subset of the peers in the network.
• Centralize: Rely on logs maintained by a central server.

Table 2 summarizes the peer-reviewed studies in each category and lists the
particular systems they examine. Studies which intercept data have typically fo-
cused on Kazaa, which was one of the most popular peer-to-peer systems. Saroiuet
al. [41] show that in 2002 Kazaa traffic was between one and two orders of magni-

Peer Properties Connectivity Properties

Static PropertiesAvailable resources (e.g., files)
Geographic location

Degree distribution
Clustering coefficient
Shortest path lengths
Resiliency

Dynamic PropertiesSession length
Uptime
Remaining uptime
Inter-arrival interval
Arrival rate

Stable core
Search efficiency
Search reliability

Table 1: Groups of properties

Intercept Participate Crawl Sample Centralize
[37] (B,D,G,Z)
[14] (Z)
[23] (Z)
[24] (Z)
[41] (Z,G)
[43] (Z,G,*)
[20] (B,D,G,Z,N,*)

[17] (G)
[21] (G)
[22] (G)
[35] (G)
[44] (G)
[2] (G)
[10] (B)
[27] (Z)
[28] (Z)

[8] (G)
[3] (G)
[40] (G)
[46] (G,K,B)
[48] (G)

[7] (N,G)
[42] (N,G)
[4] (O)
[11] (D)
[13] (S)
[45] (K)

[18] (B)
[38] (B)
[15] (B)
[51] (*)

Table 2: File sharing measurement studies, grouped by technique. The system un-
der study is shown in parenthesis. B=BitTorrent, D=eDonkey2000, G=Gnutella,
K=Kad, N=Napster, S=Skype, O=Overnet, Z=Kazaa, *=Miscellaneous
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tude larger than Gnutella traffic. However, others studies tend to focus on Gnutella,
which has several open source implementations available and open protocol spec-
ifications. Other popular file-sharing networks such eDonkey 2000, Overnet, and
Kad remain largely unstudied. Each of the different measurement techniques has
different strengths and weaknesses, explained in detail below.

2.1 Passive Monitoring

Monitoring peer-to-peer traffic at a gateway router provides useful information
about dynamic peer properties such as the types and sizes of files being transferred.
It also provides a limited amount of information about dynamic connectivity proper-
ties such as how long peers remain connected. However, passive monitoring suffers
from three fundamental limitations, described below.

First, because it looks at only a cross-section of network traffic, usage patterns
may not be representative of the overall user populations. For example, two of the
most detailed studies of this type [14, 41] were both conducted at the University of
Washington (UW). Because the University has exceptional bandwidth capacity and
includes an exceptional number of young people, their measurements may capture
different usage characteristics than, for example, a typical home broadband user.
This limitation may be somewhat overcome by comparing studies taken from dif-
ferent vantage points. One study [43] overcomes the single-viewpoint limitation by
capturing data at several routers within a Tier-1 ISP.

The second limitation of passive monitoring is that it only provides information
about peers that are actively sending or receiving data during the measurement win-
dow. Monitoring traffic cannot reveal any information aboutpeers which are up but
idle, and it is not possible to tell with certainty when the user has opened or closed
the application. These caveats aside, passive monitoring is quite useful for providing
insight in file sharing usage patterns.

The third limitation is the difficulty in classifying P2P traffic. Karagianniset
al. [20] show that the most common method of identifying P2P traffic, by port num-
ber, is increasingly inaccurate.

The passive monitoring technique is predominantly used to study bulk data
movement such as HTTP-like file transfers and streaming, where it is relatively
easy to identify a flow at its beginning and count the bytes transferred.

2.2 Participate

Instrumenting open-source clients to log information on disk for later analysis fa-
cilitates the study of dynamic connectivity properties, such as the length of time
connections remain open, bandwidth usage, and the frequency with which search
requests are received. However, there is no guarantee that observations made at one
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vantage point are representative. Some studies employ multiple vantage points, but
the vantage points still typically share common characteristics (e.g., exceptionally
high bandwidth Internet connections) and still may not be representative.

2.3 Crawl

A crawler is a program which walks a peer-to-peer network, asking every known
peer for a list of its neighbors to iteratively explore the entire graph, similar to
the way a web-spider operates. Crawling is the only technique for capturing a full
snapshot of the topology, needed for graph analysis and trace-driven simulation.
However, accurately capturing the whole topology is tricky, particularly for large
networks that have a rapidly changing population of millions of peers. All crawlers
capture a distorted picture of the topology because the topology changes as the
crawler runs.

2.4 Sample

Several studies gather data by sampling a set of peers in order to study static peer
properties, such as link bandwidth and shared files. By sampling the set of peers
at regular intervals, studies may also examine dynamic peerproperties such as the
session length distribution. To locate the initial set of peers, researchers have used
techniques such as a partial crawl [4,11,13,42], issuing search queries for common
search terms [7, 42], and instrumenting a participating peer [7]. One drawback of
sampling is that it is difficult to guarantee that the initialset of peers are represen-
tative. Additionally, when studying dynamic properties, sampling implicitly gathers
more data from peers who are present for a larger portion of the measurement win-
dow.

2.5 Centralize

The final measurement technique is to use logs from a centralized source. Due to
the decentralized nature of peer-to-peer networks, there typically is no centralized
source. However, BitTorrent uses a centralized rendezvouspoint called atracker that
records peer arrivals, peer departures, and limited information about their download
progress.
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2.6 Summary

Measurement techniques for gathering data about the operation of peer-to-peer sys-
tems, summarized in Table 3, each have their advantages and disadvantages.

TechniqueAdvantages Disadvantages

Passive monitoringProvides information about traffic May not be representative
Omits idle peers
Omits traffic on non-standard ports

ParticipateProvides information about dynamic
connectivity

May not be representative

Crawl Captures the entire topology
Unbiased

Doesn’t scale
May have significant distortion

SampleCaptures peer properties
Unbiased techniques available

Haphazard sampling often unrepre-
sentative
Dynamic properties inherently biased
toward long-lived peers

CentralizeUnbiased Only available if system has a central-
ized component

Table 3: Summary of existing measurement techniques

3 What to Measure

The following subsections summarize other empirical studies of peer-to-peer sys-
tems, discuss their main findings, and identify important areas which remain un-
studied.

3.1 Static Peer Properties

Saroiu, Gummadi, and Gribble provide an extensive and informative study, primar-
ily of static peer properties [42]. While earlier work conceived of peers as equal par-
ticipants, their landmark study demonstrates that in practice not all peers contribute
equally to peer-to-peer systems. Using data collected fromGnutella and Napster in
May 2001, their observations show a heavy skew in the distributions of bottleneck
bandwidth, latency, availability, and the number of sharedfiles for each host, with
each of these qualities varying by many orders of magnitude.

Additionally, they found correlations between several of the properties. Bottle-
neck bandwidth and the number of uploads have a positive correlation, while bottle-
neck bandwidth and the number of downloads have a negative correlation. In other
words, peers with high bandwidth tend to be uploading many files, while peers with
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low bandwidth have to spend more time downloading. Interestingly, no significant
correlation exists between bottleneck bandwidth and the number of files stored on a
peer.

In addition to the sweeping work of Saroiuet al. [42], several studies focus on
examining the files shared by peers [2, 7, 11, 49]. A few results have consistently
appeared in these studies. First, peers vary dramatically in the number of files that
they share, with a relatively small percentage of peers offering the majority of avail-
able files. In addition, a large fraction of peers share no files at all (25% in [42],
two-thirds in [2,11], 11–13% in [49]). Second, the popularity of stored files in file-
sharing systems is heavily skewed; a few files are enormouslypopular, while for
most files only a few peers have a copy. Fessantet al. [11] found that it may be
described by a Zipf distribution. However, Chu, Labonte, and Levine [7] found that
the most popular files were relatively equal in popularity, although less popular files
still had a Zipf-like distribution.

Studies also agree that the vast majority of files and bytes shared are in audio or
video files, leading to the distribution of file sizes exhibiting a multi-modal behavior.
Each studies shows that a plurality of files are audio files (48% in [11], 67% in [49],
76% in [7]). However, video files make up a disproportionately large portion of the
bytes stored by peers (67% in [11], 53% in [49], 21% in [7]).

Fessantet al. [11] took the additional step of examining correlations in the files
shared by peers. Their results show that users have noticeable interests, with 30%
of files having a correlation of at least 60% with at least one other file. Of peers
with at least 10 files in common, they found that 80% have at least one more file in
common. Likewise, of peers with at least 50 files in common, intheir data nearly
100% have at least one more file in common.

3.2 Dynamic Peer Properties

Most dynamic peer properties are tied to how long and how frequently peers are
active.Session length is the length of time a peer is continuously connected to a
given peer-to-peer network, from when it arrives until it departs.Uptime is the length
of time a peer that is still present has been connected.Remaining uptime is how
much longer until an active peer departs.Lifetime is the duration from the first time a
peer connects to a peer-to-peer network—ever—to the very last time it disconnects.
Availability is the percentage of time that a peer and its resources are connected to
the peer-to-peer network within some window.Downtime is the duration between
two successive sessions. Finally, aninter-arrival interval is the duration from the
arrival of one peer until the arrival of the next peer. The session length, uptime, and
remaining uptime are closely related, as shown in Figure 1. The popularity of file
transfers is another dynamic peer property, which we examine separately.

Generally, the most important distribution for simulationand analysis is the
session-length distribution, as it fully determines the uptime and remaining up-
time distributions and strongly influences the availability. The median session length
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Fig. 1: Illustration of the relationship between session length, uptime, and remaining
uptime

specifies how much churn a protocol must cope with, and the shape of the distribu-
tion determines whether some peers are dramatically more stable than others.

Due to its importance, several studies examine the session length distribution.
Rhea, Geels, and Kubiatowicz [39] summarize these studies,as shown in Table 4
which is adapted from their paper and updated with our more recent study [46].

While the median differs dramatically, all the studies agree that the session
lengths are heavily skewed: many sessions are short, while some session are very
long. Several studies draw the conclusion that session lengths can be modeled
with a power-law (or Pareto) distribution [5, 13, 26] or exhibit heavy-tailed behav-
ior [13, 14, 43]. Chu, Labonte, and Levine [7] fit session lengths to a log-quadratic
distribution, which can be viewed as a second-order variation of the Pareto distribu-
tion. Only one of the earlier studies [5] provide an analysisand fit to support their
conclusion. However, Leonard, Rai, and Loguinov [25, pg. 8]suggest that the fit
given in [5] seems implausible and point out some possible methodological errors.

Citation Systems Observed Session Time
[42] Gnutella, Napster 50%≤ 60 min.
[7] Gnutella, Napster 31%≤ 10 min.
[43] Kazaa 50%≤ 1 min.
[4] Overnet 50%≤ 60 min.
[14] Kazaa 50%≤ 2.4 min.
[46] Gnutella, Kad 50%≤ 15 min.–1 hr.
[46] BitTorrent 50%≤ 2 min.–30 min.

Table 4: Observed session lengths in various peer-to-peer file sharing systems.
Adapted from [39].
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In our more recent study [46], we examine several common methodological prob-
lems that introduce bias into studies of peer churn and examine data from Gnutella,
Kad, and BitTorrent. The session lengths we observed were heavily skewed, but did
not agree with a power-law or Pareto distribution. However,they could be described
with a Weibull distribution.

In BitTorrent, the availability of high-quality tracker logs facilitates the study of
peer dynamics. Prior studies of BitTorrent [18, 38] show that session lengths are
heavily skewed. However, they do not attempt to create a model based on the data.
A surprising discovery shown by Izalet al. [18] is that many peers (81% in their
trace) depart before downloading the entire file, while peers who do complete the
download linger for more than six hours on average.

While most studies of peer dynamics focus on session length,Bhagwan, Savage,
and Voelker [4] provide a study of peer availability in Overnet during January 2003.
However, they find that the distribution of availability varies dramatically with the
size of the measurement window, due to the significant fraction of hosts who appear
briefly and only once.

3.2.1 Files Transfers

Another class of dynamic peer properties is related to the files that peers are actively
transferring, which in some sense is the derivative of the files being stored on each
peer (discussed above under Static Peer Properties). The properties of files being
transferred are most often studied using passive monitoring at gateway routers. Two
of the most detailed studies of files being transfered [14, 41] were both conducted
at the University of Washington (UW). The first study, [41], focuses on comparing
HTTP requests with P2P requests, demonstrating that P2P uses more than twice
as much bandwidth as the web on their network. Although they found a smaller
number of hosts are involved in the P2P traffic, each object isorders of magnitude
larger. Furthermore, they show that a majority of the P2P traffic came from a few
large video files. Their second study, [14], more closely examines the popularity
and properties of different P2P objects. The popularity of different objects did not
match a Zipf distribution, in contrast to the Zipf distribution of popularity observed
for Web objects. The authors suggest this may be due to the fact that in P2P systems,
users typically download an object at most once, while Web users may return to a
website many times. Instead, they found that unpopular objects appear Zipf-like,
while popular objects are relatively equal in popularity, matching the results for
stored files seen in [7].

Leibowitz et al. [23, 24] provide measurements from an Israeli Internet Service
Provider (ISP), and compare their findings with the UW studies. Interestingly, they
find that while the UW is an overall provider of P2P content, the ISP they study is an
overall consumer of P2P content. Their studies give particular focus to the idea of
caching P2P content. In [23], they implement a transparent 300 GB cache yielding
a 67% bandwidth savings.
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3.3 Static Connectivity Properties

In 2000, a company called “Clip2” developed a Gnutella crawler and published
their results on the web. Although not validated by peer-review, their analysis and
topology captures have been widely used in simulation studies of improvements for
Gnutella-like networks [1, 19, 29–31]. In [8], Clip2 presents analysis of snapshots
they captured between June and August of 2000. Using their crawler which took
around an hour to survey the entire topology, they gathered snapshots containing
between 1,000 and 8,000 peers.

Their work suggests that the Gnutella network has a power-law degree distribu-
tion, based on plotting the degree distribution of their snapshots on a log-log scale
and demonstrating a linear fit. Adamicet al. [1] repeat this analysis on similar data
provided by Clip2. However, neither study considers alternative models of the de-
gree distribution. Several later studies [9,12,19,34,50]rely on the power-law model,
simulating Gnutella using random power-law topologies. Lvet al. [33] show that
power-law networks exhibit poorer performance than other types of random graphs.

Ripeanu, Foster, and Iamnitchi [40] implemented a crawler and use it to examine
properties of the Gnutella overlay topology. Their crawleruses a client-server archi-
tecture running on roughly 50 computers to crawl a 30,000 node network in a few
hours. Their crawls were conducted in November 2000 throughMay 2001. The size
of the network grew from 2,063 to 48,195 peers over that time.They performed all-
pairs shortest-path computations and plotted the distribution of path lengths. 95%
of shortest-paths are 7 hops or less, with most shortest-paths being 4 or 5 hops
long. They repeat the analysis of [8] and [1] by plotting the degree distribution in
log-log scale. In their November snapshot, the degree distribution appears linear on
the log-log plot, suggesting a power-law distribution. Their March 2001 snapshot
is different. Low-degree nodes are approximately equally common, though among
high-degree nodes the distribution still appears linear onthe log-log plot.

Given that their crawls take a few hours, and peer uptimes maybe just a few
minutes [7, 14, 43], it is very possible that these topologies are highly inaccurate,
leading to a drastically distorted picture of the network. In [48], we created a new
crawler, Cruiser, which can crawl the Gnutella network in around 4 minutes. Later
in this chapter, we provide an overview of the design of cruisers and some of the
techniques we used to validate the accuracy of its snapshots. Our measurements of
Gnutella were not consistent with a power-law distribution; in fact, they showed that
virtually all peers had a degree under 35.

3.4 Dynamic Connectivity Properties

In [48], we explore how heavily skewed session lengths influence the topological
structure. We found that long-lived peers gradually find oneanother and form a
stable “core” for the peer-to-peer network. By remaining inthe system for a long
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time, these peers have more opportunity to find one another. Once found, these
connections remain until one of the peers leave.

When a user starts their P2P application, the application must discover other
peers to form connections with. This initial discovery process is calledbootstrap-
ping. Karbhariet al. [21] provide a comparative study of the bootstrapping mecha-
nisms of several Gnutella implementations.

Sripanidkulchai presented one of the first studies of searchterms in a P2P net-
work [44], demonstrating that queries follow a Zipf distribution, except for the most
popular queries which are of roughly equal popularity (similar to the distributions of
files stored and file transfers). The fact that popular queries are much more common
than unpopular queries suggests caching query results may be beneficial [35,44].

Klemm et al. [22] provide a comprehensive analysis of queries, breakingdown
the number of queries observed by time of day and geographical region. It includes
distributions for the number of sessions that generate queries, the time until the
first queries, the query inter-arrival time, and the length of the session. In short,
it provides a framework for generating a synthetic query workload as seen from a
single peer.

3.5 Summary

Peer-to-peer systems have been a popular topic for empirical studies. Existing stud-
ies cover properties of stored files, file transfers, and search terms in great detail.
Additionally, Saroiu, Gummadi, and Gribble [42] provide a comprehensive study
of static peer properties. However, these measurement studies have been rather ad-
hoc, gathering data in the most convenient manner without critically examining their
methodology for measurement bias. While an ad-hoc approachis often suitable for
first-order approximations (e.g., “file popularity is heavily skewed”), it is generally
not appropriate for making precise conclusions (e.g., “session-lengths are power-
law”). One of the largest gaps in the existing work is the development and validation
of high-fidelity measurement tools for peer-to-peer networks. The remainder of this
chapter describes two tools for gathering highly accurate measurements.

4 Cruiser: a fast P2P crawler

The global state of a peer-to-peer system is distributed among all the peers. Ex-
ploring the graph and capturing the state of each peer captures the global state. A
crawler is a tool that captures global state in this way. Since the system changes
as the crawler explores, the picture isdistorted, much like a photograph capturing
rapid motion. Therefore, crawl speed is important. The faster the crawler runs, the
less distortion. Crawlers have most often been used for capturing snapshots of the
overlay topology as a graph, needed for studying many staticconnectivity proper-
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ties. Many studies [3, 8, 28, 40] take 30 to 120 minutes to crawl the network and
capture a snapshot of the graph. However, many peers are not even present for that
long [14, 39, 43]. This suggests existing crawlers are much too slow and may be
capturing very distorted snapshots. The accuracy of these snapshots most likely has
not been previously addressed because it is challenging to measure the distortion
without a perfect reference snapshot for comparison.

This section documents a fast crawler, calledCruiser, that can capture complete
topologies in just a few minutes, introduces techniques forassessing the accuracy
of snapshots, and shows that Cruiser may be used to capture accurate snapshots.
Additional details may be found in [48]. We focus on capturing snapshots of the
Gnutella topology, as Gnutella is one of the largest P2P systems and has been the
target of most prior P2P crawlers, allowing us to make meaningful comparisons.
Although we focus on Gnutella, Cruiser uses a plug-in architecture, allowing it to
crawl other P2P systems with the addition of an appropriate plug-in.

In order to crawl quickly, the design of Cruiser must overcome several chal-
lenges:

• It must make heavy use of parallelism to contact many peers simultaneously.
Managing so many connections in parallel can lead to CPU bottlenecks requiring
a distributed architecture.

• If the load is too great, Cruiser may lose data.1 Therefore, Cruiser must carefully
control the load by appropriately limiting the number of connections. Since each
connection uses a variable amount of resources, this limit must be dynamic.

• Cruiser cannot afford to wait the minutes for a TCP connection attempt to time-
out. Instead, the proper trade-off between timing out too quickly (which increases
distortion by losing data) and timing out too slowly (which increases distortion
by making the crawl slower) must be found empirically.

4.1 The Design of Cruiser

Our primary goal in the design of Cruiser is to minimize distortion in captured
snapshots by maximizing the speed at which Cruiser exploresthe overlay topology.
We employ several techniques and features to achieve this design goal, as described
below.

4.1.1 Two-Tier Networks

Cruiser leverages the two-tier structure of modern P2P networks by only crawling
ultrapeers. Since each leaf must be connected to an ultrapeer, this approach enables
us to capture all the nodes and links of the overlay by contacting a relatively small

1 For example, connections may appear to time out if the CPU load is so great that received packets
spend too long in a queue before being processed.
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fraction of all peers. This strategy leads to a major reduction (around 85%) in the
duration of a crawl without any loss of information.

4.1.2 Distributed Architecture

Cruiser employs a master-slave architecture in order to achieve a high degree of
concurrency and to effectively utilize available resources on multiple computers. A
master process coordinates multiple slave processes that act as independent crawlers
and crawl disjoint portions of the network in parallel. The slaves communicate with
the master using loose synchronization as follows. Each slave has an independent
queue of addresses to contact, which the master fills. Each slave drains its queue by
querying peers for their neighbors and reporting back with the data they’ve gathered.
The master extracts new addresses from the data and uses thisto fill the queues. The
crawl terminates when all the queues are empty.

4.1.3 Asynchronous Communications

Each slave process crawls hundreds of peers in parallel using asynchronous com-
munications. Cruiser implements an adaptive load management mechanism to en-
sure that slave processes remain busy but do not become overwhelmed. This is im-
portant for the steady progress of the crawl especially whendifferent slave nodes
have heterogeneous processing capabilities. Toward this end, each slave monitors
its CPU load and adjusts its maximum number of parallels connections using an
additive-increase multiplicative-decrease (AIMD) algorithm similar to TCP’s con-
gestion control mechanism. In practice, each PC typically runs with close to 1,000
parallel connections, contributing an additional speed-up of nearly three orders of
magnitude, compared to using synchronous communications (as in [40]).

4.1.4 Appropriate Timeouts

When peers are unresponsive, waiting for TCP to timeout and give up attempting to
connect takes a long time. On our systems, a full TCP timeout to an unresponsive
address takes more than 3 minutes. While this is suitable formany interactive and
automated applications, one of our primary design goals it to make crawls as quick
as possible. We conducted an evaluation of the cost-versus-benefit tradeoff of differ-
ent timeout values for crawling. As a function of the timeoutlength, Figure 2 shows
the duration of the crawl and the percentage of peers that were unreachable. We see
that while very low timeouts (less than 10 seconds) result ina dramatic increase
in the number of timeouts, there are diminishing returns forusing longer timeout
values, while the crawl length (and thus distortion) continues to increase. In other
words, if a peer has not responded after 10 seconds, it is unlikely to ever respond.
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Therefore, we use a timeout of 10 seconds, providing an additional speedup of more
than a factor of two, compared to using full TCP timeouts.

4.2 Quantifying Snapshot Accuracy

One obvious metric to evaluate the performance of Cruiser isthe time it takes to
perform a crawl. However, the crawl duration doesn’t revealhow accurate the crawl
is; it only informs us if the crawl is more accurate than another crawl performed un-
der similar conditions. Snapshot accuracy can not be directly measured since there
is no reference snapshot for comparison. Therefore, we mustindirectly quantify the
effect of crawling speed on snapshot accuracy.

To examine the impact of crawling speed on the accuracy of captured snapshots,
we adjust the crawling speed (and thus the crawl duration) ofCruiser by changing
the number of parallel connections that each slave process can open. Using this tech-
nique, Cruiser can effectively emulate the behavior of previously reported crawlers
which have a lower degree of concurrency.

We introduce the following two metrics for evaluating a crawler. The first metric,
edge distortion, examines the edges in the captured snapshot. For each contacted
peerA, with neighborsNA, we examine each of its neighborsB ∈ NA to see if they
likewise reportedA as their neighbor. If not, we have an inconsistency in the graph
caused by the fact that the edge changed sometime between crawling nodeA and
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Fig. 2: Effects of the timeout length on crawl duration and snapshotcompleteness
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crawling nodeB. The edge distortion, then, is the fraction of edges that areincon-
sistent.

The second metric,node distortion, examines the peers present in two consec-
utive snapshots captured back-to-back. We denote the peersas the setsV1 andV2.
Comparing these two back-to-back snapshots provides insight into how distorted
our picture of the network is. If Cruiser were instantly fastand captured perfect
snapshots,V1 andV2 would be identical. The greater the change that occurs while
Cruiser runs, the greater the difference betweenV1 andV2. We define the node dis-
tortion as |V1∆V2|

|V1|+|V2|
, whereV1∆V2 is the symmetric difference ofV1 andV2 (i.e., peers

in one set or the other, but not both). Note that whenV1 = V2, the node distortion is
0%, and whenV1 andV2 are completely disjoint the node distortion is 100%.

Figure 3 depicts peer and edge distortion as a function of crawl duration. This
figure demonstrates that the accuracy of snapshots decreases with the duration of the
crawl, because the increased distortion reflects changes inthe topology that occur
while the crawler is running. Crawlers that take 1–2 hours (comparable to those in
earlier works) have a node distortion of 9%–15% and an edge distortion of 31%–
48%, while at full speed Cruiser exhibits a node distortion of only 4% and an edge
distortion of only 13%.
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5 Sampling

While fast, Cruiser unavoidably takesO(|V |) time, which means it may still be too
slow to capture accurate snapshots of system with a very large population (V ) or
when the per-peer state is time-consuming to collect. For such cases, we need a
mechanism to collect unbiased samples, which is the topic ofthe this chapter.

5.1 Sampling with Dynamics

We develop a formal and general model of a P2P system as follows. If we take
an instantaneous snapshot of the system at timet, we can view the overlay as a
graphG(V,E) with the peers as vertices and connections between the peersas edges.
Extending this notion, we incorporate the dynamic aspect byviewing the system as
an infinite set of time-indexed graphs,Gt = G(Vt ,Et). The most common approach
for sampling from this set of graphs is to define a measurementwindow,[t0,t0 +∆ ],
and select peers uniformly at random from the set of peers whoare present at any
time during the window:Vt0,t0+∆ =

⋃t0+∆
t=t0 Vt . Thus, it does not distinguish between

occurrences of the same peer at different times.
This approach is appropriate if peer session lengths are exponentially distributed

(i.e., memoryless). However, existing measurement studies [18,38,42,46] show ses-
sion lengths are heavily skewed, with many peers being present for just a short time
(a few minutes) while other peers remain in the system for a very long time (i.e.,
longer than∆ ). As a consequence, as∆ increases, the setVt0,t0+∆ includes an in-
creasingly large fraction of short-lived peers.

A simple example may be illustrative. Suppose we wish to observe the number of
files shared by peers. In this example system, half the peers are up all the time and
have many files, while the other peers remain for around 1 minute and are immedi-
ately replaced by new short-lived peers who have few files. The technique used by
most studies would observe the system for a long time (∆ ) and incorrectly conclude
that most of the peers in the system have very few files. Moreover, their results will
depend on how long they observe the system. The longer the measurement window,
the larger the fraction of observed peers with few files.

One fundamental problem of this approach is that it focuses on samplingpeers
instead ofpeer properties. It selects each sampled vertex at most once. However,
the property at the vertex may change with time. Our goal should not be to select
a vertexvi ∈

⋃t0+∆
t=t0 Vt , but rather to sample the property atvi at a particular instant

t. Thus, we distinguish between occurrences of the same peer at different times:
samplesvi,t andvi,t′ gathered at distinct timest 6= t ′ are viewed as distinct, even
when they come from the same peer.The key difference is that it must be possible
to sample from the same peer more than once, at different points in time. Using the
formulationvi,t ∈Vt , t ∈ [t0,t0+∆ ], the sampling technique will not be biased by the
dynamics of peer behavior, because the sample set is decoupled from peer session
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lengths. To our knowledge, no prior P2P measurement studiesrelying on sampling
make this distinction.

Returning to our simple example, our approach will correctly select long-lived
peers half the time and short-lived peers half the time. Whenthe samples are exam-
ined, they will show that half of the peers in the system at anygiven moment have
many files while half of the peers have few files, which is exactly correct.

If the measurement window (∆ ) is sufficiently small, such that the distribution of
the property under consideration does not change significantly during the measure-
ment window, then we may relax the constraint of choosingt uniformly at random
from [t0,t0 + ∆ ].

We still have the significant problem of selecting a peer uniformly at random
from those present at a particular time. We begin to address this problem in the next
section.

Erdös–Rényi Gnutella Watts–Strogatz Barabási–Albert
Breadth-First Search 4.54·10−4 2.73·10−3 4.73−3 2.77·10−3

Random Walk 3.18·10−4 1.57·10−3 7.64−5 2.84·10−3

Metropolis–Hastings 5.97·10−5 5.79·10−5 6.08−5 5.22·10−5

Table 5:Kolmogorov-Smirnov test statistic for techniques over static graphs. Values
above 1.07·10−4 lie in the rejection region at the 5% level.

5.2 Sampling from Static Graphs

We now turn our attention to topological causes of bias. Towards this end, we mo-
mentarily set aside the temporal issues by assuming a static, unchanging graph.
The selection process begins with knowledge of one peer (vertex) and progressively
queries peers for a list of neighbors. The goal is to select peers uniformly at ran-
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dom. In any graph-exploration problem, we have a set of visited peers (vertices) and
a front of unexplored neighboring peers. There are two ways in which algorithms
differ: (i) how to chose the next peer to explore, and(ii) which subset of the ex-
plored peers to select as samples. Prior studies use simple breadth-first or depth-first
approaches to explore the graph and select all explored peers. These approaches
suffer from several problems:

• The discovered peers are correlated by their neighbor relationship.
• Peers with higher degree are more likely to be selected.
• Because they never visit the same peer twice, they will introduce bias when used

in a dynamic setting as described in Section 5.1.

5.2.1 Random Walks

A better candidate solution is the random walk, which has been extensively studied
in the graph theory literature (for an excellent survey see [32]). We briefly sum-
marize the key terminology and results relevant to sampling. The transition matrix
P(x,y) describes the probability of transitioning to peery if the walk is currently at
peerx:

P(x,y) =

{ 1
degree(x) y is a neighbor of x,
0 otherwise

If the vectorv describes the probability of currently being at each peer, then the
vectorv′ = vP describes the probability after taking one additional step. Likewise,
vPr describes the probability after takingr steps. As long as the graph is connected
and not bipartite, the probability of being at any particular node,x, converges to a
stationary distribution:

π(x) = lim
r→∞

(vPr)(x) =
degree(x)

2 · |E|

In other words, if we select a peer as a sample everyr steps, for sufficiently larger,
we have the following good properties:

• The information stored in the starting vector,v, is lost, through the repeated se-
lection of random neighbors. Therefore, there is no correlation between selected
peers. Alternately, we may start many walks in parallel. In either cases, afterr
steps, the selection is independent of the origin.

• While the stationary distribution,π(x), is biased towards peers with high degree,
the bias is precisely known, allowing us to correct it.

• Random walks may visit the same peer twice, which lends itself better to a dy-
namic setting as described in Section 5.1.

In practice,r need not be exceptionally large. For graphs where the edges have a
strong random component (e.g., small-world graphs such as peer-to-peer networks),
it is sufficient that the number of steps exceed the log of the population size, i.e.,
r ≥ O(log|V |).
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5.2.2 Adjusting for degree bias

To correct the bias towards high degree peers, we make use of the Metropolis–
Hastings method for Markov Chains. Random walks on a graph are a special case
of Markov Chains. In a regular random walk, the transition matrix P(x,y) leads to
the stationary distributionπ(x), as described above. We would like to choose a new
transition matrix,Q(x,y), to produce a different stationary distribution,µ(x). Specif-
ically, we desireµ(x) to be the uniform distribution so that all peers are equally
likely to be at the end of the walk. Metropolis–Hastings [6,16,36] provides us with
the desiredQ(x,y):

Q(x,y) =

{

P(x,y)min
(

µ(y)P(y,x)
µ(x)P(x,y) ,1

)

if x 6= y,

1−∑z 6=x Q(x,z) if x = y

Equivalently, to take a step from peerx, select a neighbory of x as normal

(i.e., with probabilityP(x,y)). Then, with probability min
(

µ(y)P(y,x)
µ(x)P(x,y) ,1

)

, accept the

move. Otherwise, return tox (i.e., with probability 1−∑z 6=x Q(x,z)).

To collect uniform samples, we haveµ(y)
µ(x) = 1, so the move-acceptance probabil-

ity becomes:

min

(

µ(y)P(y,x)
µ(x)P(x,y)

,1

)

= min

(

degree(x)
degree(y)

,1

)

Therefore, our algorithm for selecting the next step from some peerx is as follows:

• Select a neighbory of x uniformly at random.
• Queryy for a list of its neighbors, to determine its degree.
• Generate a random value,p, uniformly between 0 and 1.
• If p ≤ degree(x)

degree(y) , y is the next step.
• Otherwise, remain atx as the next step.

We call this the Metropolized Random Walk (MRW). Qualitatively, the effect is to
suppress the rate of transition to peers of higher degree, resulting in selecting each
peer with equal probability.

5.2.3 Evaluation

Although [6] provides a proof of correctness for the Metropolis–Hastings method,
to ensure the correctness of our implementation we conduct evaluations through
simulation over static graphs. This additionally providesthe opportunity to compare
MRW with conventional techniques such as Breadth-First Search (BFS) or naive
random walks (RW) with no adjustments for degree bias.

To evaluate a technique, we use it to collect a large number ofsample vertices
from a graph, then perform a goodness-of-fit test against theuniform distribution.
For Breadth-First Search, we simulate typical usage by running it to gather a batch of
1,000 peers. When one batch of samples is collected, the process is reset and begins
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anew at a different starting point. To ensure robustness with respect to different
kinds of connectivity structures, we examine each technique over several types of
graphs as follows:

• Erdös–Ŕenyi: The simplest variety of random graphs
• Watts–Strogatz: “Small world” graphs with high clustering and low path

lengths
• Barabási–Albert: Graphs with extreme degree distributions, also known as

power-law or scale-free graphs
• Gnutella: Snapshots of the Gnutella ultrapeer topology, captured in our earlier

work [48]

To make the results more comparable, the number of vertices (|V | = 161,680)
and edges (|E| = 1,946,596) in each graph are approximately the same.2 Table 5
presents the results of the goodness-of-fit tests after collecting 1000· |V | samples,
showing that Metropolis–Hastings appears to generate uniform samples over each
type of graph, while the other techniques fail to do so by a wide margin.

Figure 4 explores the results visually, by plotting the number of times each peer
is selected. If we selectk · |V | samples, the typical node should be selectedk times,
with other nodes being selected close tok times approximately following a nor-
mal distribution with variancek.3 We usedk = 1,000 samples. We also include an
“Oracle” technique, which selects peers uniformly at random using global infor-
mation. The Metropolis–Hastings results are virtually identical to the Oracle, while
the other techniques select many peers much more and much less thank times.
In the Gnutella, Watts–Strogatz, and Barabási–Albert graphs, Breadth-First Search
exhibits a few vertices that are selected a large number of times (> 10,000). The
(not-adjusted) Random Walk (RW) method has similarly selected a few vertices
an exceptionally large number of times in the Gnutella and Barabási–Albert mod-
els. The Oracle and MRW, by contrast, did not select any vertex more than around
1,300 times.

In summary, the Metropolis–Hastings method selects peers uniformly at random
from a static graph. The next section examines the additional complexities when
selecting from a dynamic graph, introduces appropriate modifications, and evaluates
the algorithm’s performance.

5.3 Empirical Results

In addition to the simulator version, we have implemented the MRWB algorithm
for sampling from real peer-to-peer networks into a tool called ion-sampler . The

2 Erdös–Rényi graphs are generated based on some probability p that any edge may exist. We set
p = 2|E|

|V |·(|V |−1) so that there will be close to|E| edges, though the exact value may vary slightly.

The Watts–Strogatz model require that|E| be evenly divisible by|V |, so in that model we use
|E| = 1,940,160.
3 Based on the normal approximation of a binomial distribution with p = 1

|V | andn = k|V |.
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following subsections briefly describe the implementationand usage ofion-sampler
and present empirical experiments to validate its accuracy.

5.3.1 Ion-Sampler

Theion-sampler tool uses a modular design that accepts plug-ins for new peer-
to-peer systems.4 A plug-in can be written for any peer-to-peer system that allows
querying a peer for a list of its neighbors. Theion-sampler tool hands IP-
address:port pairs to the plug-in, which later returns a list of neighbors or signals
that a timeout occurred. Theion-sampler tool is responsible for managing the
walks. It outputs the samples to standard output, where theymay be easily read by
another tool that collects the actual measurements. For example, ion-sampler
could be used with existing measurement tools for measuringbandwidth to estimate
the distribution of access link bandwidth in a peer-to-peersystem. Listing 1 shows
an example of usingion-sampler to sample peers from Gnutella.

5.3.2 Empirical Validation

The topology snapshots from Cruiser provide a point of reference for the degree
distribution to evaluate the accuracy ofion-sampler empirically. By capturing
every peer, Cruiser is immune to sampling difficulties. However, because the net-
work changes as Cruiser operates, its snapshots are slightly distorted. In particular,
peers arriving near the start of the crawl are likely to have found additional neigh-
bors by the time Cruiser contacts them. Therefore, we intuitively expect a slight
upward bias in Cruiser’s observed degree distribution. Forthis reason, we would
not expect a perfect match between Cruiser and sampling, butif the sampling is un-
biased we still expect them to be very close. We can view the CCDF version of the
degree distribution captured by Cruiser as a close upper-bound on the true degree
distribution.

Figure 5 presents a comparison of the degree distribution ofreachable ultrapeers
in Gnutella, as seen by Cruiser and by the sampling tool (capturing approximately
1,000 samples withr = 25 hops). It also includes the results of a short crawl,5 a
sampling technique commonly used in earlier studies (e.g.,[42]). We interleaved
running these measurement tools to minimize the change in the system between
measurements of different tools, in order to make their results comparable.

Examining Figure 5, we see that the full crawl and sampling distributions are
quite similar. The sampling tool finds slightly more peers with lower degree, com-
pared to the full crawl, in accordance with our expectationsdescribed above. We

4 In fact, it uses the same plug-in architecture as our earlier, heavy-weight tool, Cruiser, which
exhaustively crawls peer-to-peer systems to capture topology snapshots.
5 A “short crawl” is a general term for a progressive exploration of a portion of the graph, such
as by using a breadth-first or depth-first search. In this case, we randomly select the next peer to
explore.



Characterization of P2P Systems 21

examined several such pairs of crawling and sampling data and found the same pat-
tern in each pair. By comparison, the short crawl exhibits a substantial bias towards
high degree peers relative to both the full crawl and sampling.

5.3.3 Efficiency

Having demonstrated the validity of the MRWB technique, we now turn our at-
tention to its efficiency. Performing the walk requiresn · r queries, wheren is the
desired number of samples andr is the length of the walk in hops. Ifr is too low,
significant bias may be introduced. Ifr is too high, it should not introduce bias, but
is less efficient. From graph theory, we expect to requirer ≥ O(log|V |) for an ordi-
nary random walk. Based on our empirical experiments in [47], we conservatively

bash$ ./ion-sampler gnutella --hops 25 -n 10
10.8.65.171:6348
10.199.20.183:5260
10.8.45.103:34717
10.21.0.29:6346
10.32.170.200:6346
10.201.162.49:30274
10.222.183.129:47272
10.245.64.85:6348
10.79.198.44:36520
10.216.54.169:44380
bash$

Listing 1: Example usage of theion-sampler tool. We specify that we want
to use the Gnutella plug-in, each walk should take 25 hops, and we would like 10
samples. The tool then prints out 10 IP-address:port pairs.We have changed the first
octet of each result to “10” for privacy reasons.
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Degree

C
C

D
F

(%
)

4035302520151050

100

80

60

40

20

0

Fig. 5: Comparison of degree distributions observed from samplingversus exhaus-
tively crawling all peers
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regard a choice ofr = 25 as a safe walk length for Gnutella. Choosingr = 25, we
can collect 1,000 samples by querying 25,000 peers, over an order of magnitude
in savings compared with performing a full crawl which must contact more than
400,000.

6 Summary and Future Work

The first half of this chapter surveys techniques for measuring attributes of P2P sys-
tems as well as characterizations derived from the application of those techniques.
The second half explores two measurement techniques in detail—crawling and
sampling—and demonstrates the importance of validating measurement method-
ology.

In our ongoing work, we are exploring different techniques to improve the ac-
curacy and efficiency of the crawling and sampling techniquepresented here (and
earlier presented in [47,48]). Additionally, we are examining large-scale traffic mon-
itoring over Distributed Hash Tables (DHTs).
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