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Peer-to-peer systems are becoming increasingly popular, with millions of simul-

taneous users and a wide range of applications. Understanding existing systems and

devising new peer-to-peer techniques relies on access to representative models, derived

from empirical observations, of user behavior and peer-to-peer system behavior on a

real network. However, it is challenging to accurately capture behavior in peer-to-

peer systems because they are distributed, large, and rapidly changing. While some

prior work does study the properties of peer-to-peer systems, they do not quantify

the accuracy of their measurement techniques, sometimes leading to significant error.

This dissertation empirically explores and characterizes a wide variety of prop-

erties of peer-to-peer systems. The properties examined fall into four groups, along

two axes: properties of peers versus properties of how peers are connected, and static

properties versus dynamic properties. To study these properties, this dissertation

develops and assesses two measurement techniques: (i) a crawler for capturing global
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state and (ii) a Metropolized random walk approach for collecting samples. Using

these techniques to conduct empirical studies of widely-deployed peer-to-peer sys-

tems, this dissertation presents empirical results to suggest useful models for key

properties of peer-to-peer systems. In the end, this dissertation significantly deepens

our understanding of peer-to-peer systems and lays the groundwork for the accurate

measurement of other properties of peer-to-peer systems in the future.

This dissertation includes my previously published and my co-authored materials.
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CHAPTER 1

Introduction

The term peer-to-peer (P2P) refers to any network technology where the bulk

of the hardware resources are supplied by end-users rather than a centralized ser-

vice [1]. P2P is often contrasted with the traditional client-server paradigm, where

the hardware resources are centralized. Traditional client-server applications require

the content provider to provide resources proportional to the number of users. In

the peer-to-peer paradigm, user systems (“peers”) contribute resources. Because the

available resources implicitly grow proportionally with the number of users, peer-to-

peer systems have the potential to scale more smoothly with the user population than

client-server systems.

The P2P paradigm began in earnest with the rise of the Napster file-sharing

service, which provided an index for the vast stores of multimedia files on end-user

systems. Since then, P2P has continued to increase in popularity, currently with

millions of simultaneous users [2] and covering a wide range of applications, from

file-sharing programs like LimeWire and eMule to Internet telephony services such as

Skype. In particular, today’s P2P file-sharing applications (e.g., FastTrack, eDonkey,

Gnutella) are extremely popular and contribute a significant portion of total Internet

traffic [2, 3, 4]. Chapter 2 provides a more in-depth history of widely-deployed peer-

to-peer applications and developments in peer-to-peer technology.

In lieu of a centralized service, P2P systems typically make use of user systems

(called peers) connected together over the Internet. In effect, they form an overlay
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network over the physical network. One of the central problems of P2P research

is to discover more efficient ways to accomplish a task over these overlay networks,

which may include structured the overlay in special ways or using clever algorithms

to coordinate peers.

Understanding existing systems and devising new P2P techniques relies on hav-

ing access to representative models derived from empirical observations of existing

systems. However, the large and dynamic nature of P2P systems makes capturing

accurate measurements challenging. Because there is no central repository, data must

be gathered from the peers who appear and depart as users start and exit the P2P

application. Even a simple task such as counting the number of peers can be challeng-

ing since each peer can only report its immediate overlay neighbors. This dissertation

addresses the following two fundamental questions:

• How do we collect accurate measurements from these systems?

• What are useful models to characterize their properties?

To answer these questions, we take the following steps: (i) develop and verify

accurate measurements techniques, (ii) present empirical results which may be used

to evaluate models and deepen our understanding of existing systems, and (iii) suggest

useful models based on the empirical observations.

While prior studies have attempted to characterize different aspects of P2P sys-

tems, they have not taken the first step of critically examining their measurement

tools (i.e., answering the first question), leading to conflicting results [5] or conclu-

sions that may be based on measurement artifacts (e.g., power-law degree distribu-

tions [6, 7, 8, 9] as evidenced in [10]). These measurement studies have been rather

ad-hoc, gathering data in the most convenient manner without critically examining

their methodology for measurement bias. While an ad-hoc approach is often suit-

able for first-order approximations (e.g., “file popularity is heavily skewed”), it is

generally not appropriate for making precise conclusions (e.g., “session-lengths are

power-law”). One of the largest gaps in the prior work is the development and vali-

dation of high-fidelity measurement tools for peer-to-peer networks. while Chapter 3

provides a survey of other P2P measurement studies.
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Measurement: There are two basic approaches to collecting measurements from

P2P systems, each with advantages and disadvantages. The first approach is to

capture global state by collecting data about every peer in the system. The advantage

of this approach is that all the information is made available for analysis. The typical

problem with this approach is that the state changes while the measurement tool

communicates with the peers, leading to a distorted view of the system. The longer

the tool requires to capture the global state, the more distorted the data. Additionally,

capturing global state does not scale well. As P2P systems grow larger, capturing

global state becomes more time consuming, leading to greater distortion. To be at

all practical, capturing global state requires an exceptionally fast tool able to gather

data from a large number of peers very quickly. Chapter 4 introduces such a tool,

called Cruiser, describes its design, and presents an evaluation of its performance.

The second approach is to collect local samples. The advantage of this approach

is that it scales well. The Law of Large Numbers from statistics tells us that the

average from a large number of samples will closely approximate the true average,

regardless of the population size. One disadvantage of sampling is that we cannot

easily use samples to examine certain properties which are fundamentally global in

nature. For example, we cannot compute the diameter of a graph based on local

observations at several peers. More importantly, if the collected samples are biased

in some way, the resulting data may lead us to incorrect conclusions. For this reason,

capturing samples requires validation of the sampling tool, which must be carefully

designed to avoid bias. Chapter 5 examines the different causes of bias that can affect

sampling in P2P systems, presents methods for overcoming those difficulties, and

demonstrates the effectiveness of the methods by simulating under a wide variety of

peer behavior, degree distributions, and overlay construction techniques, culminating

in the ion-sampler tool.

Properties: Systematically tackling the problem of characterizing P2P systems re-

quires a structured organization of the different components. At the most basic level,

a P2P system consists of a set of connected peers. We can view this as a graph with

the peers as vertices and the connections as edges. One fundamental way to divide
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the problem space is into properties of the peers versus properties of the way peers are

connected. Another fundamental division is examining the way the system is versus

the way the system evolves. In some sense, any property may change with time and

could be viewed as system evolution. We use the term “static properties” to refer to

properties that can be measured at a particular moment in time and modeled with

a static model (e.g., peer degree), and the term “dynamic properties” to refer to

properties that are fundamentally dynamic in nature (e.g., session length). Table 1.1

presents an overview of several interesting properties categorized by whether they are

static or dynamic, and whether they are peer properties or connectivity properties.

The properties in these four categories will be examined in detail in Chapters 6, 7,

8, and 9. Chapter 10 concludes the dissertation with a summary of characterized

properties.

Inclusion of Published Material: Chapters 4 through 9 of this dissertation are

based heavily on my published papers with co-authors [10, 11, 12, 13, 14, 15, 16, 17,

18, 19]. Of these, in [15] and [17] the experimental work were performed by fellow

graduate students, Shanyu Zhao and Amir Rasti, respectively, building upon my

earlier experiments and data collection. In each of my other papers the experimental

work is entirely mine, with my co-authors contributing technical guidance, editorial

Peer Properties Connectivity Properties

Static Properties Available resources (e.g.,

files)

Geographic location

Degree distribution

Clustering coefficient

Shortest path lengths

Resiliency

Dynamic Properties Session length

Uptime

Remaining uptime

Inter-arrival interval

Arrival rate

Stable core

Search efficiency

Search reliability

TABLE 1.1: Groups of properties
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assistance, and small portions of writing. Each chapter or major section in this

dissertation includes additional details of the nature of my contributions.

Terminology: When a new term is introduced, it will be shown in italics and listed

in the index. Some common terms used throughout this dissertation are introduced

here, borrowing from graph theory and traditional (non-P2P) networking.
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CHAPTER 2

Background

This chapter provides background material that the remainder of the dissertation

relies on. Section 2.1 provides a brief history of the major peer-to-peer systems and

significant steps in the evolution of peer-to-peer systems. Section 2.2 describes the

goals of developing models from empirical data, describe the models most commonly

used in the related work, and gives a high-level overview of the techniques available for

validating the appropriateness of a model. Section 2.3 gives some formal definitions

for graph theory concepts such as small-world and power-law graphs.

2.1 History

The term “peer-to-peer” gained widespread usage with the release of Napster in

1999. Unlike the traditional client-server model in which a centralized point (the

server) provides resources to a large number of users (the clients), in the peer-to-

peer paradigm the majority of the resources are contributed by other users. Napster

facilitated the swapping of songs among users by providing a central index for all

the songs available from all of Napster’s users. While Napster provided the indexing

service, the important resource—the songs—were provided by the users.

Facing legal pressure, Napster shut down in July 2001. Meanwhile in early 2000,

Nullsoft released Gnutella, a file-sharing application with no central index. Instead,

peers connect to one another to form a loose overlay mesh, and searches are performed
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by flooding the search to other peers nearby in the mesh. However, Nullsoft’s parent

company, American Online (AOL), shut down the project leaving the official Gnutella

application orphaned. The protocol was quickly reverse-engineered and the Gnutella

network is now composed of a family of third-party implementations. The Gnutella

Developer Forum [20] acts as a loose standards body, allowing the protocol to grow

and change while still allowing different implementations to function together.

In 2001, facing scalability problems after the shut down of Napster, Gnutella

changed from a flat overlay to a two-tier overlay, shown in Figure 2.1. A fraction

of well-provisioned peers become ultrapeers which act as indexes for the other peers,

called leaf peers. The ultrapeers connect to one another, forming a loose mesh similar

to the original Gnutella network.

Another advancement in Gnutella was the introduction of a new search mecha-

nism called Dynamic Querying [21]. The goal in this scheme is to only gather enough

results to satisfy the user (typically 50 to 200 results). It is similar in principle to an

expanding ring search. Rather than forwarding a query to all neighbors, ultrapeers

manage the queries for their leaves. Toward this end, an ultrapeer begins by forward-

ing a query to a subset of top-level connections using a low search radius (often called

the time-to-live, or TTL). From that point on, the query is flooded outward until

the TTL expires. The ultrapeer collects the results and estimates how rare matching

results are. If matches are rare (i.e., there are few or no responses), the query is sent

through more connections with a relatively high TTL. If matches are more common

but not sufficient, the query is sent down a few more connections with a low TTL.

This process is repeated until the desired number of results are collected or the ul-
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trapeer gives up. Each ultrapeer estimates the number of visited ultrapeers through

each neighbor based on the following formula:
∑TTL−1

i=0 (d − 1)i, where d is the degree

of the neighbor. The accuracy of this formula assumes that all peers have the same

node degree, d. When Dynamic Querying was introduced, the number of neighbors

each ultrapeer attempts to maintain was increased to allow more fine-grained control

with Dynamic Querying by giving ultrapeers more neighbors to choose from.

At the time of Napster’s shutdown, numerous other file-sharing systems sprang

into existence, some of which are still widely popular today. The most prominent

examples are Kazaa1 and eDonkey, which use a two-tier overlay similar to modern

Gnutella. Each of these three systems (Kazaa, eDonkey, and Gnutella) regularly has

millions of simultaneous users [2].

Swarming: An interesting innovation called swarming allows peers to begin relaying

a file to other peers before downloading it in full. Swarming allows the file to propagate

more quickly through the network, which is an important feature when there is a rapid

increase in demand. Although eDonkey and Gnutella also have this feature, it is most

commonly associated with BitTorrent.

BitTorrent differs significantly from file-sharing applications such as Gnutella and

Kazaa. Instead of offering a distributed search function, BitTorrent provides only

a mechanism to transfer a file. Peers neighbor only with other peers downloading

the same file, exchanging portions of the file (called blocks or pieces) until they have

assembled the entire file. As a result, BitTorrent forms a separate overlay for each

file.

Structured Overlays: In early 2001, the research community proposed a radi-

cal new method for search in peer-to-peer systems called Distributed Hash Tables

(DHTs), also called structured overlays [22, 23]. In DHTs, each peer has an overlay

address and a routing table. When a peer performs a query for an identifier, the query

is routed to the peer with the closest overlay address. The DHT enforces rules on

the way that peers select neighbors to guarantee performance bounds on the number

1The Kazaa application uses the FastTrack protocol. The terms are often used interchangeably.
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of hops needed to perform a query (typically O(log |V |) where |V | is the number of

peers in the network).

However, initially it was unclear how well DHTs would be able to sustain their

strict routing table rules in the face of rapid peer dynamics. Additionally, it was

unclear how to efficiently implement a keyword-search over the identifier-query that

DHTs provide. The research community continued to explore new variations of the

DHT theme [24, 25, 26], evaluate DHT performance [5, 27, 28, 29], and develop

applications making use of DHTs [30, 31, 32]. Despite, the excitement from the

research community, application developers remained skeptical and there were no

large-scale deployments.

That changed in 2003 when the authors of eDonkey created Overnet, based on

Kademlia [24]. The authors of eMule, a third-party implementation of the eDonkey

protocol, created another Kademlia-based DHT, called Kad. More recently, BitTor-

rent clients have begun using a Kademlia-based DHT to locate rendezvous points for

peers downloading the same file.

2.2 Modeling and Distributions

This dissertation is concerned with empirical measurements and deriving models

from them. In most cases, we will observe a series of events X1, X2, X3, . . . , Xn and

aim to model the events with a probability distribution described by a cumulative

distribution function (CDF):

F (x) = Pr[X ≤ x].

We will also frequently make use of the complementary cumulative distribution func-

tion (CCDF), given as:

Pr[X > x] = 1 − F (x).

The noted statistician George E. P. Box wrote: “All models are wrong, but some

models are useful” [33]. That is to say, by definition models are imperfect approxi-

mations, and any claim that a model is perfectly accurate is highly dubious. Models
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are useful when they capture the most important properties of some behavior, allow-

ing us to meaningfully describe and reason about the behavior in simplified terms.

When reasoning from a model (or using simulations), the reasoning may be sensitive

to certain properties of the model. Any conclusions draw using the model are only

valid if the model produces a good approximation for any sensitive properties. As

an example, if an analysis depends only on the mean value of some event, then the

particular distribution used in the model is of little consequence. On the other hand,

if an analysis depends specifically on the events being normally distributed, but the

actual events exhibit heavy skew, then the conclusions are of little value. Because

the validity of a model depends on the purpose for which we use the model, it is

almost always erroneous to make a blanket statement that a model is valid. As an

example, Newton’s mechanics are an incredibly useful model, but they do not accu-

rately describe behavior near very large masses or when traveling near the speed of

light. Einstein’s general relativity more accurately describes those cases but does not

describe quantum physics, and so on.

Given these considerations, a model that accurately captures many important

properties is more powerful than a model that accurately captures fewer properties,

because it will remain valid in a wider variety of circumstances. For a particular set

of data, we can always construct a very accurate model by using a large number of

model parameters. However, such a model is fragile because it is unlikely to fit as

accurately if we collect more data. Also, such a model will not be simple, conflicting

with one of the goals of using a model in the first place. Therefore, when selecting

one model over another, we prefer one that:

• Accurately captures more important properties

• Maintains its accuracy across datasets

• Uses fewer parameters

The goals of simplicity and accuracy are sometimes in conflict and the choice of

model sometimes depends on its application. General relativity accurately describes

a wider ranger of behavior, but Newtonian mechanics are simpler and accurately

describe a wide range of everyday behavior. However, some models are strictly better
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than others. No one makes use of Aristotle’s laws of motions; Newton’s are more

accurate, explain a wider variety of data, and are no more complex.

In summary, whenever we attempt to fit a model to data, we prefer simpler models

and must demonstrate that the model holds for data not used to perform the fit. If

we find a useful model, we must specify what aspects of the behavior the model

accurately captures.

Classes of Distributions: Statistics provides many classes of probability distribu-

tions that can describe a wide range of behavior. A class of distributions is described

by a formula for the cumulative distribution function (CDF) that has one or more pa-

rameters. For example, the class of exponential distributions have the single positive

parameter λ and are described by:

F (x) = Pr[X ≤ x] = 1 − e−λx.

Johnson, Kotz, and Balakrishnan [34, 35] provide an excellent survey of useful classes

of distributions and their properties. We briefly survey here the distributions most

commonly used by network researchers.

The class of exponential distributions given above is a simple one-parameter dis-

tribution class, often used to model the time between independent events that occur

at a constant rate, λ, such as the number of times you need to roll a die before rolling

a 6. It is also used to model how long an entity remains in state 1 if it can change to

state 2 with probability 1
λ

per unit time, such as radioactive decay. The exponential

distribution class is also called the memoryless distribution class because the time

until the switch to state 2 is not dependent on the amount of time already spent in

state 1. An exponential distribution has mean 1
λ
, median log 2

λ
, and variance 1

λ2 .

The class of subexponential distributions are those whose right tail 1−F (x) decays

slower than any exponential. Commonly used subexponential distributions include

Weibull distributions with shape parameter 0 < k < 1 and the Log-normal distribu-

tions .

A heavy-tailed distribution is one with the following property [36]:

Pr[X > x] ∝ x−k, as x → ∞, 0 < k < 2.
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The parameter k is called the tail index and is equal to the “slope” of the tail on a log-

log plot. As a result, if a distribution is heavy-tailed, on a log-log plot of the CCDF

the tail will appear linear with a “slope” between 0 and 2. Heavy-tailed distributions

have infinite variance, and for k < 1 also have an infinite mean.

The Pareto distribution class is the most commonly used heavy-tailed distribution

and is given by the CDF:

Pr[X ≤ x] = 1 −
(

xm

x

)k

,

where xm is a positive location parameter and k is a positive shape parameter. Note

that a Pareto distribution is only heavy-tailed if k < 2, as we define it here.2 When

plotted in log-log scale, the CCDF of the Pareto distribution appears linear, origi-

nating at (xm, 1.0) with slope −k. The Pareto distribution is described as scale-free,

because for any value of x, Pr[X>jx]
Pr[X>x]

= j−k. In other words, the ratio between x and

jx is independent of the scale of x.

The shifted Pareto distribution class is alternative form of the Pareto with a scale

parameter β instead of the location parameter xm, and is given by the CDF:

Pr[X ≤ x] = 1 −

(

1 +
x

β

)−k

.

Asymptotically, it’s equivalent to a regular Pareto distribution with the same k, but

it frequently allows for greater flexibility for lower values of x.

The Zipf distribution is a related discrete distribution, defined as:

Pr[X = x] ∝ rank(x)−a,

where rank(x) is the rank of item x when all items are sorted from most common

to least common. When plotted in log-log scale with rank(x) on the x-axis, the Zipf

distribution appears linear, much like the Pareto distribution. The Zipf distribution

is often used when the X values have no direct numeric interpretation and the rank(x)

transformation is needed before plotting. For example, the first use of Zipf was in

examining the frequency of word usage in books [37].

2Alternative definitions of heavy-tailed are used in some works, which include all Pareto
distributions.
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A power-law distribution is any distribution such that:

Pr[X > x] ∝ x−k, as x → ∞.

Thus, power-law distributions include both Pareto and Zipf distributions. Power-

law distributions are also called scaling or scale-free because their sole response to

conditioning is a change in scale.

Fitting: Fitting is the act of finding the best distribution within a class by finding

the optimum parameters values to minimize error between the distribution and a set

of data. Numerous statistical tests exist to validate whether data can be described by

a particular distribution. These tests are called goodness-of-fit tests . The general idea

of these tests is to compute a test statistic that summarizes the differences between

the observed data and the distribution, then compute the probability, p, of that level

of difference in light of the number of samples.3 If p is below some predetermined

threshold (typically 5%), then we can reject the distribution as a likely candidate for

generating the data. If p is above the threshold, we cannot claim that the distribution

generated the data; we have merely been unable to prove that the distribution did

not generate the data. Not all of goodness-of-fit tests are equally useful. The ability

of a test to reject a mismatched distribution is the power of the test. In general, the

power of a test increases with the size of the data set.

One difficulty with goodness-of-fit tests is that if the test is powerful enough,

it will almost always reject the distribution. Real events are the composite result

of many complex interactions; while we may be able to develop a simple model that

describes the general behavior, a sufficiently powerful statistical test will always reject

the model due to these simplifications.

Another difficulty is that goodness-of-fit tests typically require that the variables

be independently and identically-distributed (IID). The IID requirement means that

if we collect 100 samples, the distribution sampled from must be the same for all 100

samples. In practice, this is often not the case (and even when true, it is virtually

impossible to prove).

3If the data matches the distribution, the larger the number of samples, the lower the test statistic.
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For these reason, goodness-of-fit tests are of limited utility for our purposes.4 Nev-

ertheless, the test statistic computed by goodness-of-fit tests is often useful for giving

a sense of how closely a distribution matches the data. Another rather different, but

very useful, statistical test is Leonard Savage’s interocular trauma test (IOTT): plot

the data in such a way as to make any important differences blindingly obvious [38].

2.3 Graph Theory

This dissertation assumes a rudimentary knowledge of graph theory and familiarity

with the types of graphs commonly employed by network researchers. Informally a

graph is a set of vertices connected by edges. More formally, the graph G = (V, E)

consists of the set of edges V and the set of edges E. Each edge is a pair of vertices.

Throughout this dissertation we are concerned with undirected graphs, where (A, B) ∈

E implies (B, A) ∈ E. The number of edges incident to a vertex is called the vertex’s

degree.

A natural interpretation of a peer-to-peer network is a graph, where the peers

are vertices and network connection between peers (such as via TCP) are edges.

Throughout this work, we tend to use node or vertex when viewing the network as a

graph and especially when relying on graph theory, and peer in contexts when working

outside the graph model (e.g., peers may arrive, depart, and communicate). Likewise,

the term edge is used in the graph context, while connection is used when placing

more emphasis on the network aspects. The term hop refers to an overlay connection,

particularly in the context of traversing the overlay during a search. However, because

insights from graph theory are only helpful to the extent they enlighten our knowledge

of network operation, we cannot separate the two completely. While the context

influences the choice of words, “node”, “vertex”, and “peer” should be viewed as

interchangeable throughout this work, as should “connection”, “edge”, and “hop”.

4Goodness-of-fit tests are very useful in other fields where rejecting a match is very useful. For
example, in medicine, if we can reject that a medication’s effect matches a placebo’s effect, then we
have demonstrated that the medication has a statistically significant effect.



15

Finally, two connected peers (i.e., two vertices sharing an edge) are called neighbors

or adjacent .

A random graph model is a description of a random process for generating graphs.

A random graph is one such graph generated by a graph model. Depending on

the nature of the model, the generated random graphs will have different typical

properties. As graphs are good descriptions of networks, a common technique in

network research is locate an appropriate graph model whose typical properties match

the empirical observations. Using the graph model allows simulation and analytical

studies to draw general conclusions about graphs similar to the empirically observed

graph, without being tied to particular features of the empirical graph. In particular,

studying scalability requires varying the size of the graph, while maintaining its most

important properties.

The earliest and simplest graph model is the Erdös–Rényi model [39]. The model

has two parameters: |V |, the number of vertices, and p, the probability of an edge ex-

isting. To generate an Erdös–Rényi graph, we consider every possible edge and instan-

tiate it with probability p. On average, an Erdös–Rényi graph will have |E| = |V |(|V |−1)
2

edges. It is well-known that with high probability Erdös–Rényi graphs produce a

graph with a single, giant connected component for modest values of p. Additionally,

the shortest-path distance between any pair of vertices in the giant component will

be short (O(log |V |)).

A small-world graph is a graph that has similar shortest-path lengths to Erdös–

Rényi graphs, but greater internal structure as measured by the clustering coeffi-

cient [40]. The clustering coefficient of a vertex, X, is defined as:

|edges between neighbors of X|

|possible edges between neighbors of X|
.

For example, if node A has 4 neighbors, they could have at most 6 edges between

them. If only two of the neighbors are connected together, that’s one edge and the

clustering coefficient of A is 1
6
. The clustering coefficient of a graph is defined as

the mean clustering coefficient of all the graph’s vertices. There are several different

models available for generating small-world graphs. Perhaps the most well known
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is the Watts–Strogatz model, which begins with a strongly regular graph5 and per-

mutes each edge with probability p. Strongly regular graphs are characterized by

high clustering coefficients and long shortest-path lengths (O(|V |)). For very low p,

the Watts–Strogatz graphs retain the properties of the strongly regular graph. For

high p, most of the edges in the initial graph are randomly permuted, resulting in

a graph similar to Erdös–Rényi graphs (i.e., low diameter and a very low clustering

coefficient). However, low to moderate values of p lead to small-world graphs, which

have the clustering properties of strongly regular graphs, but the low diameter of

Erdös–Rényi graphs.

A power-law graph or scale-free graph is a graph with a degree distribution that

follows a power-law distribution, i.e., a few vertices have very high degree while

most vertices have very low degree. For comparison, the degree of vertices in Erdös–

Rényi graphs is binomially distributed (asymptotically). Power-law graphs always

have a low diameter (short paths are available via the high degree vertices). There

are several different models for generating random power-law graphs (e.g., [41, 42]),

with somewhat different properties. In some models, they also have a high clustering

coefficient (most vertices neighbor with high-degree vertices who neighbor with one

another), making them a special case of small-world graphs. However, other models

to construct a power-law graph that has a low clustering coefficient (e.g., by making

it a tree).

As this dissertation is an empirical study, we are primarily concerned with observ-

ing the properties of P2P network topologies in practice to reveal how well commonly

employed models approximate the P2P network topologies.

5In a regular graph, every vertex has the same degree. A strongly regular graph has the additional
constraint that every pair of neighboring vertices have the same number of neighbors in common,
i.e., every vertex has the same clustering coefficient.
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CHAPTER 3

Related Work

Existing empirical studies of peer-to-peer networks can be categorized based on

the measurement techniques they employ or based on the properties they examine.

In this chapter, we summarize the different measurement techniques employed and

discuss their strengths and weaknesses. We then turn our attention to the properties

examined and summarize the primary empirical findings of prior work. Closely related

work will be discussed in greater detail in later chapters, where appropriate.

3.1 Measurement Techniques

Existing empirical P2P studies employ one of five basic techniques, each offering

a different view with certain advantages and disadvantages:

Passive Monitoring: Eavesdrop on P2P sessions passing through a router.

Participate: Instrument peer-to-peer software and allow it to run in

its usual manner.

Crawl: Walk the peer-to-peer network, capturing information

from each peer.

Probe: Select a subset of the peers in the network and probe them

at regular intervals.

Centralize: Rely on logs maintained by a central server.
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Table 3.1 summarizes the peer-reviewed studies in each category and lists the

particular systems they examine. Studies which intercept data have typically focused

on Kazaa, which was one of the most popular peer-to-peer system at the time of

the studies. Saroiuet al. [43] show that in 2002 Kazaa traffic was between one and

two orders of magnitude larger than Gnutella traffic. However, others studies tend

to focus on Gnutella, which has several open source implementations available and

open protocol specifications. Other popular file-sharing networks such eDonkey 2000,

Overnet, and Kad remain largely unstudied. Each of the different measurement

techniques has different strengths and weaknesses, explained in detail below.

Passive Monitoring: Monitoring peer-to-peer traffic at a gateway router provides

useful information about dynamic peer properties such as the types and sizes of files

being transferred. It also provides a limited amount of information about dynamic

connectivity properties such as how long peers remain connected. However, passive

monitoring suffers from three fundamental limitations.

First, because it looks at only a cross-section of network traffic, usage patterns

may not be representative of the overall user populations. For example, two of the

Intercept Participate Crawl Probe Centralize

[44] (B,D,G,K)

[45] (K)

[46] (K)

[47] (K)

[43] (K,G)

[48] (K,G,*)

[3] (B,D,G,K,N,*)

[49] (G)

[50] (G)

[51] (G)

[52] (G)

[53] (G)

[54] (G)

[55] (B)

[56] (K)

[57] (K)

[7] (G)

[58] (G)

[6] (G)

[59] (N,G)

[60] (N,G)

[61] (O)

[62] (D)

[63] (S)

[64] (B)

[65] (B)

[66] (B)

[67] (*)

TABLE 3.1: File sharing measurement studies, grouped by technique. The system under study

is shown in parenthesis. B=BitTorrent, D=eDonkey 2000, G=Gnutella, K=Kazaa, N=Napster,

S=Skype, O=Overnet, *=Miscellaneous
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most detailed studies of this type [43, 45] were both conducted at the University of

Washington (UW). Because the University has exceptional bandwidth capacity and

includes an exceptional number of young people, their measurements may capture

different usage characteristics than, for example, a typical home broadband user.

This limitation may be somewhat overcome by comparing studies taken from different

vantage points. One study [48] overcomes the single-viewpoint limitation by capturing

data at several routers within a Tier-1 ISP.

The second limitation of passive monitoring is that it only provides information

about peers that are actively sending or receiving data during the measurement win-

dow. Monitoring traffic cannot reveal any information about peers which are up but

idle, and it is not possible to tell with certainty when the user has opened or closed

the application. These caveats aside, passive monitoring is quite useful for providing

insight in file sharing usage patterns.

The third limitation is the difficulty in classifying P2P traffic. Karagiannis et al. [3]

show that the most common method of identifying P2P traffic, by port number, is

increasingly inaccurate.

The passive monitoring technique is predominantly used to study bulk data move-

ment such as HTTP-like file transfers and streaming, where it is relatively easy to

identify a flow at it beginning and count the bytes transferred.

Participate: Instrumenting open-source clients to log information on disk for later

analysis facilities the study of dynamic connectivity properties, such as the length of

time connections remain open, bandwidth usage, and the frequency with which search

requests are received. However, there is no guarantee that observations made at one

vantage point are representative. Some studies employ multiple vantage points, but

the vantage points still typically share common characteristics (e.g., exceptionally

high bandwidth Internet connections) and still may not be representative.

Crawl: A crawler is a program which walks a peer-to-peer network, asking each

node for a list of its neighbors, similar to the way a web-spider operates. Crawling

is the only technique for capturing a full snapshot of the topology, needed for graph

analysis and trace-driven simulation. However, capturing the whole topology is tricky,
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particularly for large networks that have a rapidly changing population of millions of

peers. All crawlers capture a distorted picture of the topology because the topology

changes as the crawler runs.

Probe: Several studies gather data by probing a set of peers in order to study static

peer properties, such as link bandwidth and shared files. By probing the set of peers

at regular intervals, studies may also examine dynamic peer properties such as the

session length distribution. To locate the initial set of peers, researchers have used

techniques such as a partial crawl [60, 61, 62, 63], issuing search queries for common

search terms [59, 60], and instrumenting a participating peer [59]. One drawback of

probing is that there is no guarantee that the initial set of peers are representative.

Additionally, when studying dynamic properties, probing implicitly gathers more data

from peers who are present for a larger portion of the measurement window.

Centralize: The final measurement technique is to use logs from a centralized source.

Due to the decentralized nature of peer-to-peer networks, there typically is no cen-

tralized source. However, BitTorrent uses a centralized rendezvous point called a

tracker that records peer arrives, peer departures, and limited information about

their download progress.

Summary: Existing measurement techniques for gathering data about the operation

of peer-to-peer systems, summarized in Table 3.2, are limited in their accuracy and

introduce unknown, and potentially large, amounts of bias. The only high-fidelity

technique is relying on centralized logs, which is of limited utility. Chapters 5 and 4

introduce new tools for gathering highly accurate measurements.

3.2 Measurement Results

The following subsections summarize other empirical studies of peer-to-peer sys-

tems, discuss their main findings, and identify important areas which remain unstud-

ied.
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Technique Advantages Disadvantages

Passive monitoring Provides information about

traffic

May be biased

Omits idle peers

Omits traffic on non-

standard ports

Participate Provides information about

dynamic connectivity

May be biased

Crawl Captures the entire topology

Unbiased

Doesn’t scale

May have significant distor-

tion

Probe Captures peer properties May be biased

Dynamic properties inher-

ently biased

Centralize Unbiased Only available if system has

a centralized component

TABLE 3.2: Summary of existing measurement techniques
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3.2.1 Static Peer Properties

Saroiu, Gummadi, and Gribble provide an extensive and informative study, pri-

marily of static peer properties [60]. While earlier work conceived of peers as equal

participants, their landmark study demonstrates that in practice not all peers con-

tribute equally to peer-to-peer systems. Using data collected from Gnutella and

Napster in May 2001, their observations show a heavy skew in the distributions of

bottleneck bandwidth, latency, availability, and the number of shared files for each

host, with each of these qualities varying by many orders of magnitude.

Additionally, they found correlations between several of the properties. Bottleneck

bandwidth and the number of uploads have a positive correlation, while bottleneck

bandwidth and the number of downloads have a negative correlation. In other words,

peers with high bandwidth tend to be uploading many files, while peers with low

bandwidth have to spend more time downloading. Interestingly, no significant cor-

relation exists between bottleneck bandwidth and the number of files stored on a

peer.

In addition to the sweeping work of Saroiu et al. [60], several studies focus on

examining the files shared by peers [54, 59, 62]. A few results have consistently

appeared in these studies. First, peers vary dramatically in the number of files that

they share, with a relatively small percentage of peers offering the majority of available

files. In addition, a large fraction of peers share no files at all (25% in [60], two-

thirds in [54, 62]). Second, the popularity of stored files in file-sharing systems is

heavily skewed; a few files are enormously popular, while for most files only a few

peers have a copy. Fessant et al. [62] found that it may be described by a Zipf

distribution. However, Chu, Labonte, and Levine [59] found that the most popular

files were relatively equal in popularity, although less popular files still had a Zipf-like

distribution.

Studies also agree that the vast majority of files and bytes shared are in audio or

video files, leading to the distribution of file sizes exhibiting a multi-modal behavior.

Each studies shows that a plurality of files are audio files (48% in [62], 76% in [59]).
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However, video files make up a disproportionately large portion of the bytes stored

by peers (67% in [62], 21% in [59]).

Fessant et al. [62] took the additional step of examining correlations in the files

shared by peers. Their results show that users have noticeable interests, with 30% of

files having a correlation of at least 60% with at least one other file. Of peers with at

least 10 files in common, they found that 80% have at least one more file in common.

Likewise, of peers with at least 50 files in common, in their data nearly 100% have at

least one more file in common.

Adar and Huberman [54] explore the relationship between sharing many files and

responding to many queries, showing that there is no clear correlation. In other

words, if a peer has many files, it may or may not have highly popular items; it may

have a large collection of rarely-sought files while other peers have small collections

of highly popular items.

3.2.2 Dynamic Peer Properties

Most dynamic peer properties are tied to how long and how frequently peers are

active. Session length is the length of time a peer is continuously connected to a given

peer-to-peer network, from when it arrives until it departs. Uptime is the length of

time a peer that is still present has been connected. Remaining uptime is how much

longer until an active peer departs. Lifetime is the duration from the first time a

peer connects to a peer-to-peer network—ever—to the very last time it disconnects.

Availability is the percentage of time that a peer and its resources are connected to

the peer-to-peer network within some window. Downtime is the duration between

two successive sessions. Finally, an inter-arrival interval is the duration from the

arrival of one peer until the arrival of the next peer. The session length, uptime, and

remaining uptime are closely related, as shown in Figure 3.1. The popularity of file

transfers is another dynamic peer property, which we examine separately.

Generally, the most important distribution for simulation and analysis is the

session-length distribution, as it fully determines the uptime and remaining uptime

distributions and strongly influences the availability. The median session length spec-
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FIGURE 3.1: Illustration of the relationship between session length, uptime, and remaining uptime

ifies how much churn a protocol must cope with, and the shape of the distribution

determines whether some peers are dramatically more stable than others.

Due to its importance, several studies examine the session length distribution.

Rhea, Geels, and Kubiatowicz [5] summarize these studies, as shown in Table 3.3

which is adapted from their paper. The results for the median session time are

conflicting, ranging from as low as one minute to as long as one hour. This may be

due to genuine differences in user behavior, or it may be due differing methodology.

While the median differs dramatically, all the studies agree that the session lengths

are heavily skewed: many sessions are short, while some session are very long. Several

studies draw the conclusion that session lengths can be modeled with a power-law (or

Pareto) distribution [63, 68, 69] or exhibit heavy-tailed behavior [45, 48, 63]. Chu,

Citation Systems Observed Session Time

[60] Gnutella, Napster 50% ≤ 60 min.

[59] Gnutella, Napster 31% ≤ 10 min.

[48] Kazaa 50% ≤ 1 min.

[61] Overnet 50% ≤ 60 min.

[45] Kazaa 50% ≤ 2.4 min.

TABLE 3.3: Observed session lengths in various peer-to-peer file sharing systems. Adapted from

[5].
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Labonte, and Levine [59] fit session lengths to a log-quadratic distribution, which

can be viewed as a second-order variation of the Pareto distribution. Only one of the

studies [68] provide an analysis and fit to support their conclusion. However, Leonard,

Rai, and Loguinov [70, pg. 8] suggest that the fit given in [68] seems implausible and

point out some possible methodological errors.

In BitTorrent, the availability of high-quality tracker logs facilitates the study of

peer dynamics. Prior studies of BitTorrent [64, 65] show that session lengths are

heavily skewed. However, they do not attempt to create a model based on the data.

A surprising discovery shown by Izal et al. [64] is that many peers (81% in their trace)

depart before downloading the entire file, while peers who do complete the download

linger for more than six hours on average.

While most studies of peer dynamics focus on session length, Bhagwan, Savage,

and Voelker [61] provide a study of peer availability in Overnet during January 2003.

However, they find that the distribution of availability varies dramatically with the

size of the measurement window, due to the significant fraction of hosts who appear

briefly and only once.

Files Transfers: Another class of dynamic peer properties are related to the files

that peers are actively transferring, which in some sense is the derivative of the

files being stored on each peer (discussed above under Static Peer Properties). The

properties of files being transferred are most often studied using passive monitoring

at gateway routers. Two of the most detailed studies of files being transfered [43, 45]

were both conducted at the University of Washington (UW). The first study, [43],

focuses on comparing HTTP requests with P2P requests, demonstrating that P2P

uses more than twice as much bandwidth as the web on their network. Although

they found a smaller number of hosts are involved in the P2P traffic, each object is

orders of magnitude larger. Furthermore, they show that a majority of the P2P traffic

came from a few large video files. Their second study, [45], more closely examines the

popularity and properties of different P2P objects. The popularity of different objects

did not match a Zipf distribution, in contrast to the Zipf distribution of popularity

observed for Web objects. The authors suggest this may be due to the fact that in
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P2P systems, users typically download an object at most once, while Web users may

return to a website many times. Instead, they found that unpopular objects appear

Zipf-like, while popular objects are relatively equal in popularity, matching the results

for stored files seen in [59].

Leibowitz et al. [46, 47] provide measurements from an Israeli Internet Service

Provider (ISP), and compare their findings with the UW studies. Interestingly, they

find that while the UW is an overall provider of P2P content, the ISP they study is

an overall consumer of P2P content. Their studies give particular focus to the idea of

caching P2P content. In [46], they implement a transparent 300 GB cache yielding a

67% bandwidth savings.

3.2.3 Static Connectivity Properties

In 2000, a company called “Clip2” developed a Gnutella crawler and published

their results on the web. Although not validated by peer-review, their analysis and

topology captures have been widely used in simulation studies of improvements for

Gnutella-like networks [8, 71, 72, 73, 74]. In [7], Clip2 presents analysis of snapshots

they captured between June and August of 2000. Using their crawler which took a bit

less than an hour to survey the entire topology, they gathered snapshots containing

between 1,000 and 8,000 peers.

Their work suggests that the Gnutella network has a power-law degree distribu-

tion, based on plotting the degree distribution of their snapshots on a log-log scale

and demonstrating a linear fit. Adamic et al. [8] repeat this analysis on similar data

provided by Clip2. However, neither study considers alternative models of the degree

distribution. Several later studies [71, 75, 76, 77, 78] rely on the power-law model,

simulating Gnutella using random power-law topologies. Lv et al. [9] show that

power-law networks exhibit poorer performance than other types of random graphs.

Ripeanu, Foster, and Iamnitchi [6] implemented a crawler and use it to examine

properties of the Gnutella overlay topology. Their crawler uses a client-server archi-

tecture running on roughly 50 computers to crawl a 30,000 node network in a few

hours. Their crawls were conducted in November 2000 through May 2001. The size
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of the network grew from 2,063 to 48,195 peers over that time. They performed all-

pairs shortest-path computations and plotted the distribution of path lengths. 95%

of shortest-paths are 7 hops or less, with most shortest-paths being 4 or 5 hops long.

They repeat the analysis of [7] and [8] by plotting the degree distribution in log-log

scale. In their November snapshot, the degree distribution appears linear on the

log-log plot, suggestion a power-law distribution. Their March snapshot is different.

Low-degree nodes are approximately equally common, though among high-degree

nodes the distribution still appears linear on the log-log plot. They also show that

the Gnutella topology is poorly matched to the underlying Internet topology.

None of these studies quantify the accuracy of their crawlers, making it difficult to

determine how accurate the captured topologies are. Given that their crawls take a

few hours, and peer uptimes may be just a few minutes [45, 48, 59], it is very possible

that these topologies are highly inaccurate, leading to a drastically distorted picture

of the network. Also, all of the captured snapshots are relatively small, making it

difficult to study scalability.

3.2.4 Dynamic Connectivity Properties

No prior studies have examined the effects of dynamics on topological structure

nor properties of structured P2P systems. However, existing work examines different

bootstrapping mechanisms, flow control mechanisms, and characteristics of queries.

Bootstrapping: When a user starts their P2P application, the application must

discover other peers to form connections with. This initial discovery process is called

bootstrapping . Karbhari et al. [50] provide a comparative study of the bootstrapping

mechanisms in LimeWire 2.8, Gtk-Gnutella 0.91, Mutella 9.4.3, and Gnucleus 1.8.6.0.

Each implementation employs a local cache of nodes discovered in previous sessions

and resorts to contacting special rendezvous points, called GWebCaches [79], if the

local cache proves unhelpful. However, the details of each implementation differs sub-

stantially. LimeWire’s performance is the best; it differentiates between ultrapeers

and leaf peers in its cache, prioritizes the cache by age, and includes the hard-coded

addresses of two orders of magnitude more GWebCaches than the other implementa-
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tions. Not only does LimeWire connect faster, but it begins receiving query replies

sooner once connected. Unfortunately, GWebCaches are not performing well; most

of the load is concentrated on just a few and the caches have many entries for hosts

that are no longer present in the system.

Flow Control: Qi He and Mostafa Ammar [49] bring to light the issue of conges-

tion in the overlay and compares how different applications cope with the problem.

Each peer connection uses TCP, a reliable transport protocol with congestion con-

trol. When an overlay connection is congested, TCP will slow down the transfer

rate. In turn, the application must slow the rate it feeds data to TCP, eventually

leading to dropping packets at the application layer.1 Their study examines the ap-

proaches taken by three different Gnutella implementations: LimeWire, Mutella, and

Gtk-Gnutella. Their study includes a comprehensive explanation of the algorithms

employed by these implementations, measurements comparing their performance, and

simulations exploring alternative algorithms. LimeWire shows the best overall per-

formance, using a flow-control scheme that prevents neighbors from sending packets

that a peer will not have the capacity to forward.

Search Characteristics: Sripanidkulchai presented one of the first studies of search

terms in a P2P network [53], demonstrating that queries follow a Zipf distribution,

except for the most popular queries which are of roughly equal popularity (similar to

the distributions of files stored and file transfers). The fact that popular queries are

much more common than unpopular queries suggests caching query results may be

beneficial [52, 53].

Klemm et al. [51] provide a comprehensive analysis of queries, breaking down

the number of queries observed by time of day and geographical region. It includes

distributions for the number of sessions that generate queries, the time until the

first queries, the query inter-arrival time, and the length of the session. In short, it

1Application-layer buffers can make dropping packets less frequent, but at the cost of increasing
latency through that peer. If a peer continually receives more packets than it can forward, it must
eventually drop some packets because the peer cannot have an infinitely large buffer.
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provides a framework for generating a synthetic query workload as seen from a single

peer.

Annexstein, Berman, and Jovanovic [58] point out an interesting quirk of flooding

over a real network, that does not occur in a simple graph model. In simulation and

analysis of scoped flooding networks such as Gnutella, it is normally assumed that all

hops take equal time to traverse. A message spreads out through the network, and

any duplicates along longer paths are dropped. However, due to unequal latencies,

it is possible for the message along the “longer” overlay path to arrive first. When

this occurs, the message will reach fewer peers, since the message arrives with a lower

TTL than in the ideal model. They call this behavior the short-circuit effect . In

simulation, they show that for a TTL of 5, it reduces the search horizon by 58% on

average.

3.3 Summary

Peer-to-peer systems have been a popular topic for empirical studies. However,

these measurement studies have been rather ad-hoc, gathering data in the most con-

venient manner without critically examining their methodology for measurement bias.

While an ad-hoc approach is often suitable for first-order approximations (e.g., “file

popularity is heavily skewed”), it is generally not appropriate for making precise

conclusions (e.g., “session-lengths are power-law”). One of the largest gaps in the

prior work is the development and validation of high-fidelity measurement tools for

peer-to-peer networks.

Chapters 5 and 4 introduce new tools for gathering highly accurate measurements.

While an argument could be made for repeating prior studies with more accurate

tools, this dissertation focuses on relatively unstudied areas. Existing studies cover

properties of stored files, file transfers, and search terms in great detail. Additionally,

Saroiu, Gummadi, and Gribble [60] provide a comprehensive study of static peer

properties. Chapter 6 reexamines several static peer properties. While several studies

have touched on peer dynamics, they offer conflicting reports. Chapter 7 explores peer

dynamics in detail.
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Turning to connectivity properties, Chapter 8 examines two-tier topologies, which

have not previously been studied empirically. Chapter 9 focuses on dynamic connec-

tivity properties, such as how peer dynamics influence overlay structure and examin-

ing search behavior over a widely deployed DHT.
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CHAPTER 4

Capturing Global State

Portions c© 2005 IEEE. Reprinted, with permission, from D. Stutzbach

and R. Rejaie, “Capturing accurate snapshots of the Gnutella network,”

in Proc. Global Internet Symposium, Miami, FL, Mar. 2005,

pp. 127–132.

The global state of a peer-to-peer system is distributed among all the peers. Ex-

ploring the graph and capturing the state of each peer captures the global state. A

crawler is a tool that captures global state in this way. Since the system changes

as the crawler explores, the picture is distorted , much like a photograph capturing

rapid motion. Therefore, crawl speed is important. The faster the crawler runs, the

less distortion. Furthermore, the duration of the crawl determines the granularity

of using back-to-back snapshots to explore dynamic properties. In other words, we

cannot explore how the system has changed over a period of 10 minutes if it takes an

hour to capture a snapshot. Crawlers have most often been used for capturing snap-

shots of the overlay topology as a graph, needed for studying many static connectivity

properties. Prior studies [6, 7, 57, 58] take 30 to 120 minutes to crawl the network

and capture a snapshot of the graph. However, many peers are not even present for

that long [5, 45, 48]. This suggests existing crawlers are much too slow and may

be capturing very distorted snapshots. The accuracy of these snapshots most likely
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has not been previously addressed because it is challenging to measure the distortion

without a perfect reference snapshot for comparison.

This chapter documents a fast crawler, called Cruiser, that can capture complete

topologies in just a few minutes, introduces techniques for assessing the accuracy

of snapshots, and shows that Cruiser may be used to capture accurate snapshots.

We focus on capturing snapshots of the Gnutella topology, as Gnutella is one of the

largest P2P systems and has been the target of most prior P2P crawlers, allowing

us to make meaningful comparisons. Although we focus on Gnutella, Cruiser uses a

plug-in architecture, allowing it to crawl other P2P systems with the addition of an

appropriate plug-in.

In order to crawl quickly, the design of Cruiser must overcome several challenges:

• It must make heavy use of parallelism to contact many peers simultaneously.

Managing so many connections in parallel can lead to CPU bottlenecks requiring

a distributed architecture.

• If the load is too great, Cruiser may lose data.1 Therefore, Cruiser must carefully

control the load by appropriately limiting the number of connections. Since each

connection uses a variable amount of resources, this limit must be dynamic.

• Cruiser cannot afford to wait the minutes for a TCP connection attempt to

timeout. Instead, the proper trade-off between timing out too quickly (which

increases distortion by losing data) and timing out too slowly (which increases

distortion by making the crawl slower) must be found empirically.

Material in this chapter was adapted from material under submission to a journal,

which includes material previously presented at conferences and workshops [10, 11,

12, 13]. The material was co-authored with Prof. Reza Rejaie and Dr. Subhabrata

Sen. The experimental work is entirely mine. The writing is primarily mine, with

contributions by Reza Rejaie, who also provided technical guidance. Subhabrata Sen

provided additional editorial assistance.

1For example, connections may appear to time out if the CPU load is so great that received
packets spend too long in a queue before being processed.
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4.1 The Design of Cruiser

Our primary goal in the design of Cruiser is to minimize distortion in captured

snapshots by maximizing the speed at which Cruiser explores the overlay topology.

We employ several techniques and features to achieve this design goal, as described

below.

Two-Tier Networks: Cruiser leverages the two-tier structure of modern P2P net-

works by only crawling ultrapeers. Since each leaf must be connected to an ultrapeer,

this approach enables us to capture all the nodes and links of the overlay by contact-

ing a relatively small fraction of all peers. This strategy leads to a major reduction

(around 85%) in the duration of a crawl without any loss of information.

Distributed Architecture: Cruiser employs a master-slave architecture in order to

achieve a high degree of concurrency and to effectively utilize available resources on

multiple computers. A master process coordinates multiple slave processes that act as

independent crawlers and crawl disjoint portions of the network in parallel. The slaves

communicate with the master using loose synchronization as follows. Each slave has

an independent 2000-element queue of addresses to contact, which the master fills.

Each slave drains its queue by querying peers for their neighbors and reporting back

with the data they’ve gathered. The master extracts new addresses from the data

and uses this to fill the queues. The crawl terminates when all the queues are empty.

Asynchronous Communications: Each slave process crawls hundreds of peers

in parallel using asynchronous communications. Cruiser implements an adaptive load

management mechanism to ensure that slave processes remain busy but do not be-

come overwhelmed. This is important for the steady progress of the crawl especially

when different slave nodes have heterogeneous processing capabilities. Toward this

end, each slave monitors its CPU load and adjusts its maximum number of paral-

lels connections using an additive-increase multiplicative-decrease (AIMD) algorithm

similar to TCP’s congestion control mechanism. In practice, each PC typically runs
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with close to 1,000 parallel connections, contributing an additional speed-up of nearly

three orders of magnitude, compared to using synchronous communications (as in [6]).

Each slave maintains a parameter, call max concur, that limits the maximum

number of open connections, similar to a TCP congestion window. No new connec-

tions will be attempted if doing so would exceed this threshold. Because there is a

high delay between opening connections and the increase in CPU load,2 max concur

should not be adjusted too frequently. To measure CPU load, each slave sets up a

timer to fire every half-second. A timer more than 50% late is interpreted as a signal

of high CPU load: max concur is multiplicatively decreased to 90% of its value and

is not changed until the timer is on time. When the timer is on time, max concur is

linearly increased by one. Similar to TCP Slow Start, max concur is multiplicatively

increased by 1.2 during the initial phase of crawling to quickly reach an appropriate

value. These parameters were set empirically through experimentation with our own

systems. A similar adaptation mechanism could be incorporated to adjust the total

number of parallel connections in order to avoid congestion on the access link of the

crawler, though thus far this has not been a bottleneck for our systems.

We have experienced other system issues in the development of Cruiser that are

worth mentioning. In particular, we needed to increase the limit on the number of

open file descriptors per process on each Linux box. Otherwise, many connection

attempts return immediately with an automatic “Connection Refused” error. In a

similar vein, we increased the number of connections that our lab firewall could track

to prevent the firewall from dropping packets due to this constraint.

Appropriate Timeouts: When peers are unresponsive, waiting for TCP to timeout

and give up attempting to connect takes a long time. On our systems, a full TCP

timeout to an unresponsive address takes more than 3 minutes. While this is suitable

for many interactive and automated applications, one of our primary design goals it

to make crawls as quick as possible. We conducted an evaluation of the cost-versus-

benefit tradeoff of different timeout values for crawling. As a function of the timeout

2This delay is the time from when the crawler sends the first TCP SYN packet until the connection
is established and data is returned by the peer, i.e., at least two round-trip times.
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length, Figure 4.1 shows the duration of the crawl and the percentage of peers that

were unreachable. We see that while very low timeouts (less than 10 seconds) result in

a dramatic increase in the number of unreachable peers, there are diminishing returns

for using longer timeout values, while the crawl length (and thus distortion) continues

to increase. In other words, if a peer has not responded after 10 seconds, it is unlikely

to ever respond. Therefore, we use a timeout of 10 seconds, providing an additional

speedup of more than a factor of two, compared to using full TCP timeouts.

4.2 Effect of Unreachable Peers

During the crawl, some peers may not be reachable by the crawler due to a variety

of temporary (route failure, network congestion) or permanent (departed, firewalled)

causes. In this section, we carefully examine the effect of unreachable peers on the

accuracy of captured snapshots. Unreachable ultrapeers can introduce the following

errors in a captured snapshot: (i) including unreachable peers that departed (which

should not be included), (ii) missing links between unreachable ultrapeers and their
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FIGURE 4.1: Effects of the timeout length on crawl duration and snapshot completeness
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leaves (which should be included), and (iii) missing links between two unreachable

ultrapeers (which should be included).

Interestingly, our measurements revealed that some of the unreachable peers are

actually overwhelmed ultrapeers that sporadically accept TCP connections and can

be contacted after several attempts. This transport-layer refusal means that the

application is not able to call accept() sufficiently fast, leading to a TCP listen buffer

overflow. We also noticed that connections to most of these overwhelmed ultrapeers

exhibit long RTT (> 1sec) and little to no loss. Since latency due to a long queue in

a router is typically accompanied by packet loss, this suggests the peer’s CPU may be

the bottleneck and the operating system is taking a long time to process the packets.

We briefly experimented with a multiple-attempt strategy, but ultimately dropped it

from Cruiser for two reasons: (i) it only marginally increased the number of reachable

peers at the cost of significantly increasing the duration of each crawl which in turn

increases distortion in captured snapshots, and (ii) it may exacerbate the existing

problem.

It is important to determine what portion of unreachable peers are departed ver-

sus firewalled or overloaded, because each group introduces a different error on the

snapshot. However, there is no reliable test to distinguish the three cases, because

firewalls can time out or refuse connections depending on their configuration. Previ-

ous studies assume that these unreachable peers are either departed or firewalled and

exclude them from their snapshots.

To determine the status of unreachable peers, we devise the following technique

to identify the fraction of peers that are unreachable because they have departed. We

perform back-to-back crawls to capture two snapshots. We can then conclude that

the unreachable peers in the first snapshot that are missing entirely from the second

snapshot have departed. This approach reveals that departed peers constitute only

2–3% of all peers in each snapshot.

Finally, we examine those unreachable peers that time out. Since overwhelmed

ultrapeers will refuse connections, we hypothesized that this group of peers is fire-

walled. To verify this hypothesis, we randomly selected 1000 (about 3% of) peers that
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were unreachable due to time out, and re-contacted them every 5 minutes.3 Interest-

ingly, more than 92% of these peers were never reachable at all. This implies that

timeout is a good indicator for firewalled peers. In summary, our investigation re-

veals that in each crawl, 30%–38% of discovered peers are unreachable. In this group,

the breakdown is as follows: 2%–3% departed, 15%–24% firewalled, and the remain-

ing unreachable peers (3%–21%) are either also firewalled or overwhelmed ultrapeers.

Since Cruiser only needs to contact either end of an edge, it is able to discover at

least 85%–91% of edges. Since firewalled peers cannot directly connect together (i.e.,

cannot be located at both ends of a missing edge) and they constitute more than half

of the unreachable peers, the actual portion of missing edges is considerably smaller.

4.3 Other Practical Considerations

We encountered several other technical difficulties:

4.3.1 Exhausting File Descriptors

Unix-like operating systems limit the number of file descriptors each process can

concurrently use. A “hard” limit, set by the system administrator, absolutely prevents

the user’s process from gaining more descriptors. A “soft” limit imposes a lower

default setting which the user can raise, up to the hard limit, with the shell command

ulimit -n hard. A common default soft limit is 256 file descriptors, which is often

smaller than the level of parallelism Cruiser will attempt to employ. Additionally,

because many TCP connections linger for a few minutes in the TIME WAIT state [81],

a crawler may have many more file descriptors in use than the level of parallelism

seen by Cruiser.

When software attempts to open more file descriptors than the limit, the open

operation fails. If the crawler software isn’t careful, this can easily be confused with

failure for another reason (such as a connection refusal from the computer at the

3Note that each attempt translates into several attempts by TCP to establish a connection by
sending SYN packets.
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target address). Because these “connections” consume few resources and complete

quickly, Cruiser may incorrectly conclude that it can increase the level of parallelism,

exacerbating the problem.

To avoid this problem, whenever Cruiser is about to open a new connection, it first

attempts to open /dev/null. If the attempt fails, Cruiser postpones opening the new

connection. If the attempt succeeds, Cruiser closes the file descriptor on /dev/null

and opens the new connection. Because the process is single-threaded, there is no

danger of another thread taking the available file descriptor after /dev/null is closed.

In our use of Cruiser, we work with our system administrators to set the hard

ulimit to a high value, preferably several thousand. Cruiser executes ulimit -n

hard during its start-up to make full use of the hard limit value.

4.3.2 Filling Firewall/NAT Tables

Connection-tracking firewalls and NAT devices also impose a limit on the number

of concurrent connections. These devices track every flow passing through them. If a

crawler opens more concurrent flows than the device can track, the extra flows won’t

reach their destination. Some devices may generate a connection failure message

while others will simply drop the packets and allow the connection to time out.

We encountered this problem in our initial experiments with Cruiser when it was

running behind a Linux-based connection-tracking firewall. By increasing the number

of flows the firewall can handle,4 we eliminated the problem.

4.3.3 Oversensitive Intrusion Detection Systems

Because a P2P crawler necessarily opens connections to a large number of ad-

dresses on a variety of ports,5 we sometimes receive inquires from system adminis-

trators with intrusion detection systems that report our machines as probing their

systems. Frequently, this is an indication that one of their users is running P2P be-

4via /proc/sys/net/ipv4/netfilter/ip conntrack max

5Many peers do not run on a default port [3].
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hind their firewall. In other cases, it occurs when a user with a dynamic IP address

assignment receives an address recently used by a P2P user. In any case, it’s essential

for a P2P crawler operator to contact their system support staff about the crawler

and its purpose before running it. Otherwise, they may easily mistake the crawler

process for a port-scanning worm.

4.4 Quantifying Snapshot Accuracy

One obvious metric to evaluate the performance of Cruiser is the time it takes to

perform a crawl. However, the crawl duration doesn’t reveal how accurate the crawl

is; it only informs us if the crawl is more accurate than another crawl performed under

similar conditions. Snapshot accuracy can not be directly measured since there is no

reference snapshot for comparison. Therefore, we indirectly quantify the effect of

crawling speed and duration on two dimensions of snapshot accuracy: completeness

and distortion.

Impact of Crawling Speed: To examine the impact of crawling speed on the

accuracy of captured snapshots, we adjust the crawling speed (and thus the crawl

duration) of Cruiser by changing the number of parallel connections that each slave

process can open. Using this technique, Cruiser can effectively emulate the behavior

of previously reported crawlers which have a lower degree of concurrency.

We introduce the following two metrics for evaluating a crawler. The first metric,

edge distortion, examines the edges in the captured snapshot. For each contacted peer

A, with neighbors NA, we examine each of its neighbors B ∈ NA to see if they likewise

reported A as their neighbor. If not, we have an inconsistency in the graph caused

by the fact that the edge changed sometime between crawling node A and crawling

node B. The edge distortion, then, is the fraction of edges that are inconsistent.

The second metric, node distortion, examines the peers present in two consecu-

tive snapshots captured back-to-back. We denote the peers as the sets V1 and V2.

Comparing these two back-to-back snapshots provides insight into how distorted our

picture of the network is. If Cruiser were instantly fast and captured perfect snap-
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shots, V1 and V2 would be identical. The greater the change that occurs while Cruiser

runs, the greater the difference between V1 and V2. We define the node distortion as
|V1∆V2|
|V1|+|V2|

, where V1∆V2 is the symmetric difference of V1 and V2 (i.e., peers in one set

or the other, but not both). Note that when V1 = V2, the node distortion is 0%, and

when V1 and V2 are completely disjoint the node distortion is 100%.

Figure 4.2 depicts peer and edge distortion as a function of crawl duration. This

figure demonstrates that the accuracy of snapshots decreases with the duration of the

crawl, because the increased distortion reflects changes in the topology that occur

while the crawler is running. Crawlers that take 1–2 hours (comparable to those in

earlier works) have a peer distortion of 9%–15% and an edge distortion of 31%–48%,

while at full speed Cruiser exhibits a peer distortion of only 4% and an edge distortion

of only 13%.

Completeness of Snapshots: To examine the completeness of snapshots captured

by Cruiser, we keep track of the following variables during each crawl: the number

of discovered top-level peers, the number of leaves, the number of links between

ultrapeers, and the number of links to leaves. Figure 4.3 presents variations of these

four variables as a function of the number of top-level contacted peers in a sample
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FIGURE 4.2: Effect of crawl speed on the accuracy of captured snapshots
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crawl. Note that the number of discovered top-level peers as well as leaves curve off

which is evidence that Cruiser has captured nearly all the participating peers. Links

between top-level peers somewhat curves off. Finally, links to leaves is necessarily

linearly increasing with the number of top-level peers because each top-level peers

provide a unique set of links between itself and its leaves.

Completeness-Duration Tradeoff: To examine the completeness-duration trade-

off for captured snapshots, we modified Cruiser to stop the crawl after a specified

period. Then, we performed two back-to-back crawls of the same duration and re-

peated this process for different durations. Figure 4.4 demonstrates the completeness-

duration tradeoff. During short crawls (on the left side of the graph), node distortion

(δ) is high because the captured snapshot is incomplete, and each crawl captures a

different subset. As the duration of the crawl increases, δ decreases which indicates

that the captured snapshot becomes more complete. Increasing the crawl length be-

yond four minutes does not decrease δ any further, and achieves only a marginal

increase in the number of discovered peers (i.e., completeness). This figure reveals a

few important points. First, there exists a “sweet spot” for crawl duration beyond

Top-level Nodes
Leaf Nodes

Top-level Links
Leaf Links

Top-level nodes contacted

N
o
d
es

/
lin

ks
d
is
co

ve
re

d
(k

)

800006000040000200000

2000

1500

1000

500

0

FIGURE 4.3: Cumulative dicovered information about overlay nodes and links as a function of

number of contacted peers



42

Peers Discovered

Node distortion (δ)

Maximum crawl duration (seconds)

P
ee

rs
d
is
co

ve
re

d
(k

)

N
o
d
e

d
is
to

rt
io

n
(δ

)

800

700

600

500

400

300

200

100

0
300250200150100500

100

80

60

40

20

0

FIGURE 4.4: Error as a function of maximum crawl duration, from running two crawls back-to-

back for eachx-value and computingδ. Averaged over 8 runs with standard deviation shown.

which crawling has diminishing returns if the goal is simply to capture the popula-

tion. Second, for sufficiently long crawls, Cruiser can capture a relatively un-stretched

snapshot. Third, the change of δ = 4% is an upper-bound on the distortion due to

the passage of time as Cruiser runs. The relatively flat delta on the right suggest that

around 4% of the network is unstable and turns over quickly.

In summary, our evaluations reveal that (i) Cruiser captures nearly all ultrapeers

and the pair-wise connections between them and the majority of connections to leaves;

(ii) both node distortion and edge distortion in captured snapshots increases linearly

with the crawl duration; and (iii) snapshots captured by Cruiser have little distortion.

In particular, we found that two back-to-back snapshots of unlimited duration differed

only 4% in their peer populations.

4.5 Summary

This chapter presents Cruiser, a fast crawler for two-tier peer-to-peer systems

such as Gnutella. We present the different techniques used in Cruiser to achieve its

high speed, including leveraging the two-tier structure, a distributed architecture,
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asynchronous communications, and choosing appropriate timeout values. We also

present techniques for quantifying the measurement inaccuracy introduced by crawl

speed and present evidence that the error in Cruiser’s snapshots is reasonably small.

Cruiser can capture the Gnutella network with one million peers in around 7

minutes using six off-the-shelf 1 GHz GNU/Linux boxes in our lab. Cruiser’s crawling

speed is about 140k peers/minute which is orders of magnitude faster than previously

reported crawlers (i.e., 2 hours for 30K peers (250/minute) in [6], and 2 minutes for

5K peer (2.5k/minute) in [60]).

Cruiser is a useful tool for capturing global snapshots of system state. Chap-

ters 8 and 9 rely heavily on snapshots of the Gnutella overlay topology captured with

Cruiser. While fast, Cruiser unavoidably takes O(|V |) time, which means it may still

be too slow to capture accurate snapshots of system with a very large population (V )

or when the per-peer state is time-consuming to collect. For such cases, we need a

mechanism to collect unbiased samples, which is the topic of the next chapter.
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CHAPTER 5

Capturing Samples

Portions c© 2006 IEEE. Reprinted, with permission, from D. Stutzbach,

R. Rejaie, N. Duffield, S. Sen, and W. Willinger, “Sampling techniques

for large, dynamic graphs,” in Proc. Global Internet Symposium,

Barcelona, Spain, Apr. 2006.

While capturing global state is certainly ideal, sometimes it is just not practical.

For very large systems, it is often prohibitively expensive to purchase the bandwidth

and computers needed to capture quick, accurate snapshots. The crawl is even more

expensive when capturing additional information about each peer, beyond its neighbor

information. For example, we may want to know the geographic distribution across

peers, or learn about the most popular files being shared. Sampling is a natural

approach for learning about these systems using light-weight data collection.

A basic objective is to devise an unbiased sampling method, i.e., one which selects

any of the present peers with equal probability. Fulfilling this objective becomes

highly non-trivial when the structure of the peer-to-peer system changes underneath

the measurements. First-generation measurement studies of P2P systems typically

relied on ad-hoc sampling techniques (e.g., [60, 61]) and provided valuable information

concerning basic system behavior. However, lacking any critical assessment of the

quality of these sampling techniques, the measurements resulting from these studies
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may be biased and consequently our understanding of P2P systems may be based on

incorrect or misleading conclusions.

In this chapter we primarily consider the challenging problem of obtaining unbi-

ased samples from unstructured P2P systems, where peers select neighbors through

a predominantly random process. Most popular P2P systems in use today belong

to this unstructured category. For structured P2P systems such as Chord [82] and

CAN [23], knowledge of the structure significantly facilitates unbiased sampling as

we discuss in Section 5.6.

The main contributions of this chapter are (i) a detailed examination of the ways

that the topological and temporal qualities of peer-to-peer systems can introduce bias

and (ii) an in-depth exploration of the applicability of a sampling technique called the

Metropolized Random Walk with Backtracking (MRWB), representing a variation of

the Metropolis–Hastings method [83, 84, 85]. Our study indicates that MRWB results

in nearly unbiased samples under a wide variety of commonly encountered peer-

to-peer network conditions. The technique assumes that the P2P system provides

some mechanism to query a peer for a list of its neighbors: a capability provided

by most widely deployed P2P systems. We also implemented the proposed sampling

technique in a tool called ion-sampler. Our evaluations show that MRWB yields

more accurate samples than previously considered sampling techniques. We quantify

the observed differences, explore underlying causes, and discuss the implications on

accurate inference of P2P properties and high-fidelity modeling of P2P systems. While

our focus is on P2P networks, many of our results apply to any large, dynamic,

undirected graph where nodes may be queried for a list of their neighbors.

Building on our earlier formulation in [16], the basic problem in sampling P2P

networks concerns the selection of representative samples of peer properties such as

peer degree, link bandwidth, or the number of files shared. To measure peer prop-

erties, any sampling technique needs to locate a set of peers in the overlay and then

gather data about the desired properties.

An unbiased sampling technique will select any of the peers present with equal

probability. While relatively straightforward in a static and known environment, this

objective poses considerable problems in a highly dynamic setting like P2P systems,
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which can easily lead to significant measurement bias for two reasons. The first

cause of sampling bias derives from the temporal dynamics of these systems, whereby

new peers can arrive and existing peers can depart at any time. Locating a set

of peers and measuring their properties takes time, and during that time the peer

constituency is likely to change. In Section 5.2, we show how this often leads to bias

towards short-lived peers and explain how to overcome this difficulty. The second

significant cause of bias has to do with the connectivity structure of P2P systems. As

a sampling program explores a given topological structure, each traversed link is in

general more likely to lead to a high-degree peer than a low-degree peer, significantly

biasing peer selection towards high-degree peers. We describe and evaluate different

techniques for traversing static overlays to select peers in Section 5.3 and find that

the Metropolized Random Walk (MRW) collects unbiased samples. In Section 5.4,

we adapt MRW for dynamic overlays by adding backtracking and demonstrate its

viability and effectiveness when the causes for both temporal and topological bias are

present. We show via simulations that the MRWB technique works well and produces

nearly unbiased samples under a variety of circumstances commonly encountered in

actual P2P systems.

Finally, in Section 5.5 we describe the implementation of the ion-sampler tool

based on MRWB and empirically evaluate its accuracy through comparison with com-

plete snapshots of Gnutella taken with Cruiser [10], as well as compare it with results

from previously used, more ad-hoc, sampling techniques. Section 5.6 discusses some

important questions such as how many samples to collect, when sampling with a

known bias may be desirable, and outlines a practical solution to obtaining unbi-

ased samples for structured P2P systems. Section 5.7 concludes the chapter with a

summary of our findings.

Material in this chapter was adapted from material previously published in pro-

ceedings [16, 18]. The material was co-authored with Prof. Reza Rejaie, Dr. Nick

Duffield, Dr. Subhabrata Sen, and Dr. Walter Willinger. The experimental work is

entirely mine. The writing is primarily mine, with small contributions from the each

of the co-authors, who also provided technical guidance. Prof. David Levin provided

the suggestion for using the Metropolis–Hastings method. The dynamic overlay sim-
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ulator used in Section 5.4 was initially developed for another project by Amir Rasti

and improved by John Capehart. I made additional improvements and added the

code for performing random walks.

5.1 Related Work

The phrase “graph sampling” means different things in different contexts. We

provide an overview of some of the different meanings of graph sampling to place our

work in the context of other research on sampling graphs. Sampling from a class of

graphs has been well studied in the graph theory literature [86, 87], where the main

objective is to prove that for a class of graphs sharing some property (e.g., same node

degree distribution), a given random algorithm is capable of generating all graphs

in the class. Cooper et al. [88] used this approach to show that their algorithm for

overlay construction generates graphs with good properties. Our objective is quite

different; instead of sampling a graph from a class of graphs our concern is sampling

peers (i.e., vertices) from a largely unknown and dynamically changing graph.

Others have used sampling to extract information about graphs (e.g., selecting

representative subgraphs from a large, intractable graph) while maintaining properties

of the original structure [89, 90, 91]. Sampling is also frequently used as a component

of efficient, randomized algorithms [92]. However, these studies assume complete

knowledge of the graphs in question. Our problem is quite different in that we do not

know the graphs in advance.

A closely related problem to ours is sampling Internet routers by running tracer-

oute from a few hosts to many destinations for the purpose of discovering the In-

ternet’s router-level topology. Using simulation [93] and analysis [94], research has

shown that traceroute measurements can result in measurement bias in the sense that

the obtained samples support the inference of power law-type degree distributions ir-

respective of the true nature of the underlying degree distribution. A common feature

of our work and the study of the traceroute technique [93, 94] is that both efforts

require an evaluation of sampling techniques without complete knowledge of the true

nature of the underlying connectivity structure. However, exploring the router topol-
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ogy and P2P topologies differ in their basic operations for graph-exploration. In the

case of traceroute, the basic operation is “What is the path to this destination?”.

In P2P, the basic operation is “What are the neighbors of this peer?”. In addition,

the Internet’s router-level topology changes at a much slower rate than the overlay

topology of P2P networks.

Another closely related problem is selecting Web pages uniformly at random from

the set of all Web pages [95, 96, 97]. Web pages naturally form a graph, with hyper-

links forming edges between pages. Unlike peer-to-peer networks, the Web graph is

directed and only outgoing links are easily discovered. Much of the work on sampling

Web pages therefore focuses on estimating the number of incoming links, to facilitate

degree correction. Unlike peers in peer-to-peer systems, not much is known about the

temporal stability of Web pages, and temporal causes of sampling bias have received

little attention in past measurement studies of the Web.

Several properties of random walks on graphs have been extensively studied an-

alytically [98], such as the access time, cover time, and mixing time. While these

properties have many useful applications, they are only well-defined for static graphs.

To our knowledge the application of random walks as a method of selecting nodes

uniformly at random from a dynamically changing graph has not been studied.

A number of papers [9, 76, 99, 100] have made use of random walks as a basis for

searching unstructured P2P networks. However, searching simply requires locating a

certain piece of data anywhere along the walk, and is not particularly concerned if

some nodes are preferred over others. Some studies [76, 100] additionally use random

walks as a component of their overlay-construction algorithm.

Recent work by Leskovec et al. [101] discusses the evolution of graphs over time and

focuses on empirically observed properties such as densification (i.e., networks become

denser over time) and shrinking diameter (i.e., as networks grow, their diameter

decreases) and on new graph generators that account for these properties. However,

the changes they observe occur on the time-scale of years, while we are concerned

with short time-scale events (e.g., minutes). Additionally, the graphs they examine

are not P2P networks and their properties are by and large inconsistent with the
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design and usage of actual P2P networks. Hence, the graph models proposed in [101]

are not appropriate for our purpose.

Awan et al. [102] also address the problem of gathering uniform samples from

peer-to-peer networks. They examine several techniques, including the Metropolis–

Hastings method, but only evaluate the techniques over static power-law graphs.

Their formulation of the Metropolis–Hastings method, as well as the Random Weight

Distribution method which they advocate, require special underlying support from

the peer-to-peer application. We implement Metropolis–Hastings in such a way that it

relies only on being able to discover a peer’s neighbors, a simple primitive operation

commonly found in existing peer-to-peer networks, and introduce backtracking to

cope with departed peers. We also conduct a much more extensive evaluation of

the proposed MRWB method. In particular, we evaluate MRWB over dynamically

changing graphs with a variety of topological properties. We also perform empirical

validations over an actual P2P network.

5.2 Sampling with Dynamics

We develop a formal and general model of a P2P system as follows. If we take

an instantaneous snapshot of the system at time t, we can view the overlay as a

graph G(V, E) with the peers as vertices and connections between the peers as edges.

Extending this notion, we incorporate the dynamic aspect by viewing the system as

an infinite set of time-indexed graphs, Gt = G(Vt, Et). The most common approach

for sampling from this set of graphs is to define a measurement window, [t0, t0 + ∆],

and select peers uniformly at random from the set: Vt0,t0+∆ =
⋃t0+∆

t=t0
Vt. Thus, we do

not distinguish between occurrences of the same peer at different times.

This formulation is appropriate if peer session lengths are exponentially dis-

tributed (i.e., memoryless). However, existing measurement studies [19, 60, 64, 65]

show session lengths are heavily skewed, with many peers being present for just a

short time (a few minutes) while other peers remain in the system for a very long

time (i.e., longer than ∆). As a consequence, as ∆ increases, the set Vt0,t0+∆ includes

an increasingly large fraction of short-lived peers.
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A simple example may be illustrative. Suppose we wish to observe the number of

files shared by peers. In this example system, half the peers are up all the time and

have many files, while the other peers remain for around 1 minute and are immediately

replaced by new short-lived peers who have few files. The technique used by most

studies would observe the system for a long time (∆) and incorrectly conclude that

most of the peers in the system have very few files. Moreover, their results will depend

on how long they observe the system. The longer the measurement window, the larger

the fraction of observed peers with few files.

One fundamental problem of this approach is that it focuses on sampling peers

instead of peer properties. It selects each sampled vertex at most once. However, the

property at the vertex may change with time. Our goal should not be to select a

vertex vi ∈
⋃t0+∆

t=t0
Vt, but rather to sample the property at vi at a particular instant

t. Thus, we distinguish between occurrences of the same peer at different times:

samples vi,t and vi,t′ gathered at distinct times t 6= t′ are viewed as distinct, even

when they come from the same peer. The key difference is that it must be possible

to sample from the same peer more than once, at different points in time. Using the

formulation vi,t ∈ Vt, t ∈ [t0, t0 + ∆], the sampling technique will not be biased by

the dynamics of peer behavior, because the sample set is decoupled from peer session

lengths. To our knowledge, no prior P2P measurement studies relying on sampling

make this distinction.

Returning to our simple example, our approach will correctly select long-lived

peers half the time and short-lived peers half the time. When the samples are exam-

ined, they will show that half of the peers in the system at any given moment have

many files while half of the peers have few files, which is exactly correct.

Another problem is that using a large ∆ captures the average behavior of the

system, which may not reflect the true state of the system at any particular moment.

In particular, it precludes study of how the system as a whole evolves, such as due

to the time-of-day effect or a flash crowd. A better approach would be to gather

several series of measurements, each over some short ∆, then compare them. If ∆

is sufficiently small, such that the distribution of the property under consideration
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does not change significantly during the measurement window, then we may relax the

constraint of choosing t uniformly at random from [t0, t0 + ∆].

We still have the significant problem of selecting a peer uniformly at random from

those present at a particular time. We begin to address this problem in the next

section.

5.3 Sampling from Static Graphs

We now turn our attention to topological causes of bias. Towards this end, we

momentarily set aside the temporal issues by assuming a static, unchanging graph.

The selection process begins with knowledge of one peer (vertex) and progressively

queries peers for a list of neighbors. The goal is to select peers uniformly at random.

In any graph-exploration problem, we have a set of visited peers (vertices) and a front

of unexplored neighboring peers. There are two ways in which algorithms differ: (i)

how to chose the next peer to explore, and (ii) which subset of the explored peers to

select as samples. Prior studies use simple breadth-first or depth-first approaches to

explore the graph and select all explored peers. These approaches suffer from several

problems:

• The discovered peers are correlated by their neighbor relationship.

• Peers with higher degree are more likely to be selected.

• Because they never visit the same peer twice, they will introduce bias when

used in a dynamic setting as described in Section 5.2.

Random Walks: A better candidate solution is the random walk, which has been

extensively studied in the graph theory literature (for an excellent survey see [98]).

We briefly summarize the key terminology and results relevant to sampling. The

transition matrix P (x, y) describes the probability of transitioning to peer y if the

walk is currently at peer x:

P (x, y) =






1
degree(x)

y is a neighbor of x,

0 otherwise
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If the vector v describes the probability of currently being at each peer, then the

vector v′ = vP describes the probability after taking one additional step. Likewise,

vP r describes the probability after taking r steps. As long as the graph is connected

and not bipartite, the probability of being at any particular node, x, converges to a

stationary distribution:

π(x) = lim
r→∞

(vP r)(x) =
degree(x)

2 · |E|

In other words, if we select a peer as a sample every r steps, for sufficiently large r,

we have the following good properties:

• The information stored in the starting vector, v, is lost, through the repeated

selection of random neighbors. Therefore, there is no correlation between se-

lected peers. Alternately, we may start many walks in parallel. In either cases,

after r steps, the selection is independent of the origin.

• While the stationary distribution, π(x), is biased towards peers with high de-

gree, the bias is precisely known, allowing us to correct it.

• Random walks may visit the same peer twice, which lends itself better to a

dynamic setting as described in Section 5.2.

In practice, r need not be exceptionally large. For graphs where the edges have a

strong random component (such as in peer-to-peer networks), it is sufficient that the

number of steps exceed the log of the population size, i.e., r ≥ O(log |V |).

Adjusting for degree bias: To correct for the bias towards high degree peers, we

make use of the Metropolis–Hastings method [83, 84, 85] for Markov Chains. Random

walks on a graph are a special case of Markov Chains. In a regular random walk,

the transition matrix P (x, y) leads to the stationary distribution π(x), as described

above. The Metropolis–Hastings method provides us with a way to build a modified

transition matrix, Q(x, y), leading to a target stationary distribution µ(x), as follows:

Q(x, y) =





P (x, y) min

(
µ(y)P (y,x)
µ(x)P (x,y)

, 1
)

if x 6= y,

1 −
∑

x6=y Q(x, y) if x = y

Equivalently, to take a step from peer x, select a neighbor y of x as normal (i.e.,

with probability P (x, y)). Then, with probability min
(

µ(y)P (y,x)
µ(x)P (x,y)

, 1
)
, accept the move.
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Otherwise, return to x. For a proof this definition of Q(x, y) leads to sampling peer

x with probability µ(x), see [83].

To collect uniform samples, we have µ(y)
µ(x)

= 1, so the move-acceptance probability

becomes:

min

(
µ(y)P (y, x)

µ(x)P (x, y)
, 1

)

= min

(
degree(x)

degree(y)
, 1

)

Therefore, our algorithm for selecting the next step from some peer x is as follows:

• Select a neighbor y of x uniformly at random.

• Query y for a list of its neighbors, to determine its degree.

• Generate a random number, p, uniformly between 0 and 1.

• If p ≤ degree(x)
degree(y)

, y is the next step.

• Otherwise, remain at x as the next step.

We call this the Metropolized Random Walk (MRW). Qualitatively, the effect is to

suppress the rate of transition to peers of higher degree, resulting in selecting each

peer with equal probability.

Evaluation: Although [83] provides a proof of correctness for the Metropolis–

Hastings method, to ensure the correctness of our implementation we conduct evalu-

ations through simulation over static graphs. This additionally provides the oppor-

tunity to compare MRW with conventional techniques such as Breadth-First Search

(BFS) or naive random walks (RW) with no adjustments for degree bias.

To evaluate a technique, we use it to collect a large number of sample vertices

from a graph, then perform a goodness-of-fit test against the uniform distribution.

For Breadth-First Search, we simulate typical usage by running it to gather a batch

of 1,000 peers. When one batch of samples is collected, the process is reset and begins

anew at a different starting point. To ensure robustness with respect to different kinds

of connectivity structures, we examine each technique over several types of graphs as

follows:
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Erdös–Rényi: The simplest variety of random graphs

Watts–Strogatz: “Small world” graphs with high clustering and low path

lengths

Barabási–Albert: Graphs with extreme degree distributions, also known as

power-law or scale-free graphs

Gnutella: Snapshots of the Gnutella ultrapeer topology, captured by

Cruiser (Chapter 4)

To make the results more comparable, the number of vertices (|V | = 161, 680)

and edges (|E| = 1, 946, 596) in each graph are approximately the same.1 Table 5.1

presents the results of the goodness-of-fit tests after collecting 1000 · |V | samples,

showing that Metropolis–Hastings appears to generate uniform samples over each

type of graph, while the other techniques fail to do so by a wide margin.

Figure 5.1 explores the results visually, by plotting the number of times each

peer is selected. If we select k · |V | samples, the typical node should be selected

k times, with other nodes being selected close to k times approximately following a

normal distribution with variance k.2 We used k = 1, 000 samples. We also include an

“Oracle” technique, which selects peers uniformly at random using global information.

The Metropolis–Hastings results are virtually identical to the Oracle, while the other

Erdös–Rényi Gnutella Watts–Strogatz Barabási–Albert

Breadth-First Search 4.54 · 10−4 2.73 · 10−3 4.73−3 2.77 · 10−3

Random Walk 3.18 · 10−4 1.57 · 10−3 7.64−5 2.84 · 10−3

Metropolis–Hastings 5.97 · 10−5 5.79 · 10−5 6.08−5 5.22 · 10−5

TABLE 5.1: Kolmogorov–Smirnov test statistic for techniques over static graphs. Values above

1.07 · 10−4 lie in the rejection region at the 5% level.

1Erdös–Rényi graphs are generated based on some probability p that any edge may exist. We

set p = 2|E|
|V |·(|V |−1) so that there will be close to |E| edges, though the exact value may vary slightly.

The Watts–Strogatz model require that |E| be evenly divisible by |V |, so in that model we use
|E| = 1, 940, 160.

2Based on the normal approximation of a binomial distribution with p = 1
|V | and n = k|V |.
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(c) Watts–Strogatz (small world)
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FIGURE 5.1: Bias of different sampling techniques; after collectingk · |V | samples. The figures

show how many peers (y-axis) were selectedx times.
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techniques select many peers much more and much less than k times. In the Gnutella,

Watts–Strogatz, and Barabási–Albert graphs, Breadth-First Search exhibits a few

vertices that are selected a large number of times (> 10, 000). The (not-adjusted)

Random Walk (RW) method has similarly selected a few vertices an exceptionally

large number of times in the Gnutella and Barabási–Albert models. The Oracle and

MRW, by contrast, did not select any vertex more than around 1,300 times.

In summary, the Metropolis–Hastings method selects peers uniformly at random

from a static graph. The next section examines the additional complexities when

selecting from a dynamic graph, introduces appropriate modifications, and evaluates

the algorithm’s performance.

5.4 Sampling from Dynamic Graphs

Section 5.2 set aside topological issues and examined the dynamic aspects of sam-

pling. Section 5.3 set aside temporal issues and examined the topological aspects of

sampling. This section examines the unique problems that arise when both temporal

and topological difficulties are present.

Our hypothesis is that a Metropolis–Hastings random walk will yield approxi-

mately unbiased samples even in a dynamic environment. The fundamental assump-

tion of Metropolis–Hastings is that the frequency of visiting a peer is proportional

to the peer’s degree. We argue that this assumption will be approximately correct

if peer relationships change only slightly during the walk. On one extreme, if the

entire walk completes before any graph changes occur, then the problem reduces to

the static case. If a single edge is removed mid-walk, the probability of selecting

the two affected peers is not significantly affected, unless those peers have very few

edges. If many edges are added and removed during a random walk, but the degree

of each peer does not change significantly, we would also expect that the probability

of selecting each peer will not change significantly. In peer-to-peer systems, each peer

actively tries to maintain a number of connections within a certain range, so we have

reason to believe that the degree of each peer will be relatively stable in practice.

On the other hand, it is quite possible that in a highly dynamic environment, or
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for certain degree distributions, the assumptions of Metropolis–Hastings are grossly

violated and it fails to gather approximately unbiased samples.

The fundamental question we attempt to answer in this section is: Under what

conditions does the Metropolis–Hastings random walk fail to gather approximately

unbiased samples? Intuitively, if there is any bias in the samples, the bias will be

tied to some property that interacts with the walk. We identify the following three

fundamental properties that interact with the walk:

Degree: The Metropolis–Hastings method is a modification of a regular

random walk in order to correct for degree-bias as described in

Section 5.3. It assumes a fixed relationship between degree and

the probability of visiting a peer. If the Metropolis–Hastings

assumptions are invalid, the degree-correction may not operate

correctly, introducing a bias correlated with degree.

Session lengths: Section 5.2 showed how sampling may result in a bias based

on session length. If the walk is more likely to select either

short-lived or long-lived peers, there will be a bias correlated

with session length.

Query latency: In a static environment the only notion of time is the number of

steps taken by the walk. In a dynamic environment, each step

requires querying a peer, and some peers will respond more

quickly than others. This could lead to a bias correlated with

the query latency. In our simulations, we model the query la-

tency as twice the round-trip time between the sampling node

and the peer being queried.3

For other peer properties, sampling bias can only arise if the desired property is

correlated with a fundamental property and that fundamental property exhibits bias.

For example, when sampling the number of files shared by each peer, there may be

sampling bias if the number of files is correlated with session length and sampling is

3 1
2 RTT for the SYN, 1

2 RTT for the SYN-ACK, 1
2 RTT for the ACK and the request, and 1

2
RTT for the reply.
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biased with respect to session length. One could also imagine the number of files being

correlated with query latency (which is very loosely related to the peer bandwidth).

However, sampling the number of shared files cannot be biased independently, as it

does not interact with the walk. To show that sampling is unbiased for any property,

it is sufficient to show that it is unbiased for the fundamental properties that interact

with the sampling technique.

5.4.1 Adapting Random Walks for a Dynamic Environment

Departing peers introduce an additional practical consideration. The walk may

try to query a peer that is no longer present–a case where the behavior of the ordinary

random walk algorithm is undefined. We make an adaptation by maintaining a stack

of visited peers. When the walk chooses a new peer to query, we push the peer’s

address on the stack. If the query times out, we pop the address off the stack, and

choose a new neighbor of the peer that is now on top of the stack. If all of a peer’s

neighbors time out, we re-query that peer to get a fresh list of its neighbors. If the

re-query also times out, we pop that peer from the stack as well, and so on. If the

stack underflows, we consider the walk a failure. We do not count timed-out peers as

a hop for the purposes of measuring the length of the walk. We call this adaptation

of the MRW sampling technique the Metropolized Random Walk with Backtracking

(MRWB) method for sampling from dynamic graphs. Note that when applied in a

static environment, this method reduces to MRW.

5.4.2 Evaluation Methodology

In the static case, we can rely on graph theory to prove the accuracy of the MRW

technique. Unfortunately, graph theory is not well-suited to the problem of dynam-

ically changing graphs. Therefore, we rely on simulation rather than analysis. We

have developed a session-level dynamic overlay simulator that models peer arrivals,

departures, latencies, and neighbor connections. We now describe our simulation

environment.
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The latencies between peers are modeled using values from the King data set [103].

Peers learn about one another using one of several peer discovery mechanisms de-

scribed below. Peers have a target minimum number of connections (i.e., degree)

that they attempt to maintain at all times. Whenever they have fewer connections,

they open additional connections. We assume connections are TCP and require a 3-

way handshake before the connection is fully established, and that peers will time out

an attempted connection to a departed peer after 10 seconds. A new peer generates

its session length from one of several different session length distributions described

below and departs when the session length expires. New peers arrive according to

a Poisson process, where we select the mean peer arrival rate based on the session

length distribution to achieve a target population size of 100,000 peers.

To query a peer for a list of neighbors, the sampling node must set up a TCP

connection, submit its query, and receive a response. The query times out if no

response is received after 10 seconds.4 We run the simulator for a warm-up period to

reach steady-state conditions before performing any random walks.

Our goal is to discover if random walks started under identical conditions will

select a peer uniformly at random. To evaluate this, we start 100,000 concurrent

random walks from a single location. Although started at the same time, the walks

will not all complete at the same time.5 We chose to use 100,000 walks as we believe

this is a much larger number of samples than most researchers will use in practice.

If there is no discernible bias with 100,000 samples, we can conclude that the tool

is unbiased for the purposes of gathering fewer samples (i.e., we cannot get more

accuracy by using less precision). Figure 5.2 shows the distribution of how long walks

take to complete in one simulation using 50 hops per walk, illustrating that most

walks take 10–20 seconds to complete. In the simulator the walks do not interact or

interfere with one another in any way. Each walk ends and collects an independent

sample.

4The value of 10 seconds was selected based on our experiments in developing a crawler for the
Gnutella network in Chapter 4.

5Each walk ends after the same number of hops, but not every hop takes the same amount of
time due to differences in latencies and due to the occasional timeout.
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FIGURE 5.2: Distribution of time needed to complete a random walk (simulated)

As an expected distribution, we capture a perfect snapshot (i.e., using an oracle)

at the median walk-completion time, i.e., when 50% of the walks have completed.

5.4.3 Evaluation of a Base Case

Because the potential number of simulation parameters is unbounded, we need a

systematic method to intelligently explore the most interesting portion of this param-

eter space. Towards this end, we begin with a base case of parameters as a starting

point and examine the behavior of MRWB under those conditions. In the following

subsections, we vary the parameters and explore how the amount of bias varies as a

function of each of the parameters. As a base case, we use the following configuration:

Session length distribution: Weibull(k = 0.59, λ = 40)

Target degree: 15

Maximum degree: 30

Peer discovery mechanism: FIFO

TABLE 5.2: Base case configuration
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Figure 5.3 presents the sampled and expected distributions for the three fun-

damental properties: degree, session length, and query latency. The fact that the

sampled and expected distributions are visually indistinguishable demonstrates that

the samples are not significantly biased in the base case.

To efficiently examine other cases, we introduce a summary statistic to quickly

capture the difference between the sampled and expected distributions, and to provide

more rigor than a purely visual inspection. For this purpose, we use the Kolmogorov–

Smirnov (KS) statistic, D, formally defined as follows. Where S(x) is the sampled

cumulative distribution function and E(x) is the expected cumulative distribution

function from the perfect snapshot, the KS statistic is:

D = max (|S(x) − E(x)|)

In other words, if we plot the sampled and expected CDFs, D is the maximum ver-

tical distance between them and has a possible range of [0, 1]. For Figures 5.3a,

5.3b, and 5.3c, the values of D were 0.0019, 0.0023, and 0.0037, respectively. For

comparison, at the p = 0.05 significance level, D is 0.0061, for the two-sample KS

statistic with 100,000 data points each. However, in practice we do not expect most

researchers to gather hundreds of thousands of samples. After all, the initial motiva-

tion for sampling is to gather reasonably accurate data at relatively low cost. As a

rough rule of thumb, a value of D ≥ 0.1 is quite bad, corresponding to at least a 10

percentage point difference on a CDF. A value of D ≤ 0.01 is excellent for most pur-

poses when studying a peer property, corresponding to no more than a 1 percentage

point difference on a CDF.

5.4.4 Exploring Different Dynamics

In this section, we examine how the amount of bias changes as we vary the type

and rate of dynamics in the system. We examine different settings of the simulation

parameters that affect dynamics, while continuing to use the topological characteris-

tics from our base case (Table 5.2). We would expect that as the rate of peer dynamics

increases, the sampling error also increases. The key question is: How fast can the

churn rate be before it causes significant error, and is that likely to occur in practice?
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FIGURE 5.3: Comparison of sampled and expected distributions. They are visually indistinguish-

able.
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In this subsection, we present the results of simulations with a wide variety of

rates using three different models for session length, as follows:

Exponential: The exponential distribution is a one-parameter distribution (rate

λ) that features sessions relatively close together in length. It

has been used in many prior simulation and analysis studies of

peer-to-peer systems [5, 29, 104].

Pareto: The Pareto (or power-law) distribution is a two-parameter distri-

bution (shape α, location xm) that features many short sessions

coupled with a few very long sessions. Some prior measurement

studies of peer-to-peer systems have suggested that session lengths

follow a Pareto distribution [45, 48, 68]. One difficulty with this

model is that xm is a lower-bound on the session length, and fits

of xm to empirical data are often unreasonably high (i.e., placing

a lower bound significantly higher than the median session length

reported by other measurement studies). In their insightful ana-

lytical study of churn in peer-to-peer systems, Leonard, Rai, and

Loguinov [70] instead suggest using a shifted Pareto distribution

(shape α, scale β) with α ≈ 2. We use this shifted Pareto distri-

bution, holding α fixed and varying the scale parameter β. We

examine two different α values: α = 1.9 (infinite variance) and

α = 2.1 (finite variance).

Weibull: Our own empirical observations (Chapter 7) suggest the Weibull

distribution (shape k, scale λ) provides a good model of peer ses-

sion lengths, representing a compromise between the exponential

and Pareto distributions. We fix k = 0.59 (based on our empirical

data) and vary the scale parameter λ.

Figure 5.4 presents the amount of sampling error (D) as a function of median

session length, for the three fundamental properties, with a logarithmic x-axis scale.

The figure shows that error is low over a wide range of session lengths but begins
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FIGURE 5.4: Sampling error of the three fundamental properties as a function of session-length

distribution. Exceptionally heavy churn (median< 1min) introduces error into the sampling pro-

cess.
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to become significant when the median session length drops below 2 minutes, and

exceeds D = 0.1 when the median drops below 30 seconds. The type of distribution

varies the threshold slightly, but overall does not appear to have a significant impact.

To investigate whether the critical threshold is a function of the length of the walk,

we ran some simulations using walks of 10,000 hops (which take around one simulated

hour to complete). Despite the long duration of these walks, they remained unbiased

with D < 0.003 for each of the three fundamental properties. This suggests that the

accuracy of MRWB is affected primarily by the rate of local variation in the ratio
degree(x)
degree(y)

relative to the time required to query peers, rather than the speed of global

variations relative to the length of the walk.

While the median session length reported by measurement studies varies consider-

ably (see Table 3.3 on page 24 for a summary), none report a median below 1 minute

and two studies report a median session length of one hour [60, 61]. In summary, these

results demonstrate that MRWB can gracefully tolerate peer dynamics. In particular,

it performs well over the rate of churn reported in real systems.

5.4.5 Exploring Different Topologies

In this section, we examine different settings of the simulation parameters that

directly affect topological structure, while using the dynamic characteristics from

our base case (Table 5.2). The Metropolis–Hastings method makes use of the ratio

between the degrees of neighboring peers. If this ratio fluctuates dramatically while

the walk is conducted, it may introduce significant bias. If peers often have only a few

connections, any change in their degree will result in a large percentage-wise change.

One key question is therefore: Does a low target degree lead to sampling bias, and, if

so, when is significant bias introduced?

The degree of peers is controlled by three factors. First, each peer has a peer

discovery mechanism that enables it to learn the addresses of potential neighbors.

The peer discovery mechanism will influence the structure of the topology and, if

performing poorly, will limit the ability of peers to establish connections. Second,

peers have a target degree which they actively try to maintain. If they have fewer

neighbors than the target, they open additional connections until they have reached
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the target. If necessary, they make use of the peer discovery mechanism to locate

additional potential neighbors. Finally, peers have a maximum degree, which limits

the number of neighbors they are willing to accept. If they are at the maximum and

another peer contacts them, they refuse the connection. Each of these three factors

influences the graph structure, and therefore may affect the walk.

We model four different types of peer discovery mechanisms:

• Oracle: This is the simplest and most idealistic approach. Peers learn about

one another by contacting a rendezvous point that has perfect global knowledge

of the system and returns a random set of peers for them to connect to.

• FIFO: In this scheme, inspired by the GWebCaches of Gnutella [79], peers

contact a rendezvous point which returns a list of the last n peers that contacted

the rendezvous, where n is the maximum peer degree.

• Soft state: Inspired by the approach of BitTorrent’s “trackers”, peers contact

a rendezvous point that has imperfect global knowledge of the system. In addi-

tion to contacting the rendezvous point to learn about more peers, every peer

periodically (every half hour) contacts the rendezvous point to refresh its state.

If a peer fails to make contact for 45 minutes, the rendezvous point removes it

from the list of known peers.

• History: Many P2P applications connect to the network using addresses they

learned during a previous session [50]. A large fraction of these addresses will

timeout, but typically enough of the peers will still be active to avoid the need to

contact a centralized rendezvous point. As tracking the re-appearance of peers

greatly complicates our simulator (as well as greatly increasing the memory

requirements), we use a coarse model of the History mechanism. We assume

that 90% of connections automatically timeout. The 10% that are given valid

addresses are skewed towards peers that have been present for a long time (more

than one hour) and represent regular users who might have been present during

the peer’s last session. While this might be overly pessimistic, it reveals the

behavior of MRWB under harsh conditions.

Figure 5.5 presents the amount of sampling error (D) for the three fundamental

properties as a function of the target degree, for each of the peer discovery methods,
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FIGURE 5.5: Sampling error of the three fundamental properties as a function of the number of

connections each peer actively attempts to maintain. Low target degree (≤ 2) introduces significant

sampling error.
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holding the maximum peer degree fixed at 30 neighbors. It shows that sampling is

not significantly biased in any of the three fundamental properties as long as peers

attempt to maintain at least three connections. Widely deployed peer-to-peer sys-

tems typically maintain dozens of neighbors. Moreover, maintaining fewer than three

neighbors per peer almost certainly leads to network fragmentation, and is therefore

not a reasonable operating point for peer-to-peer systems.

The results for the different peer-discovery mechanisms were similar to one an-

other, except for a small amount of bias observed when using the History mechanism

as the target degree approaches the maximum degree (30). To investigate this issue,

Figure 5.6 presents the sampled and expected degree distribution when using the

History mechanism with a target degree of 30. The difference between the sampled

and expected distributions is due to the 2.4% of peers with a degree of zero. These

isolated peers arise in this scenario because the History mechanism has a high fail-

ure rate (returning addresses primarily of departed peers), and when a valid address

is found, it frequently points to a peer that is already at its connection limit. The

zero-degree peers are visible in the snapshot (which uses an oracle to obtain global

Sample
Snapshot

Degree

C
C
D

F
(%

)

302520151050

100

80

60

40

20

0

FIGURE 5.6: Comparison of degree distributions using the History mechanism with a target degree

of 30. Sampling cannot capture the unconnected peers (degree= 0), causing the sampling error

observed in Figure 5.5.
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information), but not to the sampler (since peers with a degree of zero have no neigh-

bors and can never be reached). We do not regard omitting disconnected peers as a

serious limitation.

Having explored the effects of lowering the degree, we now explore the effects of

increasing it. In Figure 5.7, we examine sampling error as a function of the maximum

degree, with the target degree always set to 15 less than the maximum. There is little

error for any setting of the maximum degree.

In summary, the proposed MRWB technique for sampling from dynamic graphs

appears unbiased for a range of different topologies (with reasonable degree distribu-

tions; e.g., degree ≥ 3), operates correctly for a number of different mechanisms for

peer discovery, and is largely insensitive to a wide range of peer dynamics, with the

churn rates reported for real systems safely within this range.

5.5 Empirical Results

In addition to the simulator version, we have implemented the MRWB algorithm

for sampling from real peer-to-peer networks into a tool called ion-sampler. The

following subsections briefly describe the implementation and usage of ion-sampler

and present empirical experiments to validate its accuracy.

5.5.1 Ion-Sampler

The ion-sampler tool uses a modular design that accepts plug-ins for new peer-

to-peer systems.6 As long as the peer-to-peer system allows querying peers for a

list of their neighbors, a plug-in can be written. The ion-sampler tool hands IP-

address:port pairs to the plug-in, which later returns a list of neighbors or signals

that a timeout occurred. The ion-sampler tool is responsible for managing the

walks. It outputs the samples to standard output, where they may be easily read

by another tool that collects the actual measurements. For example, ion-sampler

6In fact, it uses the same plug-in architecture as our earlier, heavy-weight tool, Cruiser, which
exhaustively crawls peer-to-peer systems to capture topology snapshots.



70

History
Soft State

FIFO
Random Oracle

Maximum Degree

D
eg

re
e

(D
)

S
am

p
lin

g
E
rr

or
o
f

9080706050403020

0.1

0.08

0.06

0.04

0.02

0

History
Soft State

FIFO
Random Oracle

Maximum Degree

S
es

si
o
n

L
en

g
th

(D
)

S
am

p
lin

g
E
rr

or
o
f

9080706050403020

0.1

0.08

0.06

0.04

0.02

0

History
Soft State

FIFO
Random Oracle

Maximum Degree

Q
u
er

y
L
at

en
cy

(D
)

S
am

p
lin

g
E
rr

or
o
f

9080706050403020

0.1

0.08

0.06

0.04

0.02

0
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could be used with existing measurement tools for measuring bandwidth to estimate

the distribution of access link bandwidth in a peer-to-peer system. Listing 1 shows

an example of using ion-sampler to sample peers from Gnutella.

5.5.2 Empirical Validation

Empirical validation is challenging due to the absence of high-quality reference

data to compare against. In our earlier work [10, 11], we developed a peer-to-peer

crawler called Cruiser that captures the complete overlay topology through exhaustive

exploration. We can use these topology snapshots as a point of reference for the degree

distribution. Unfortunately, we do not have reliably accurate empirical reference data

for session lengths or query latency.

By capturing every peer, Cruiser is immune to sampling difficulties. However, be-

cause the network changes as Cruiser operates, its snapshots are slightly distorted [10].

In particular, peers arriving near the start of the crawl are likely to have found addi-

tional neighbors by the time Cruiser contacts them. Therefore, we intuitively expect

a slight upward bias in Cruiser’s observed degree distribution. For this reason, we

would not expect a perfect match between Cruiser and sampling, but if the sampling

bash$ ./ion-sampler gnutella --hops 25 -n 10

10.8.65.171:6348

10.199.20.183:5260

10.8.45.103:34717

10.21.0.29:6346

10.32.170.200:6346

10.201.162.49:30274

10.222.183.129:47272

10.245.64.85:6348

10.79.198.44:36520

10.216.54.169:44380

bash$

Listing 1: Example usage of theion-sampler tool. We specify that we want to use the Gnutella

plug-in, each walk should take 25 hops, and we would like 10 samples. The tool then prints out 10

IP-address:port pairs. We have changed the first octet of each result to “10” for privacy reasons.
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is unbiased we still expect them to be very close. We can view the CCDF version

of the degree distribution captured by Cruiser as a close upper-bound on the true

degree distribution.

Figure 5.8 presents a comparison of the degree distribution of reachable ultrapeers

in Gnutella, as seen by Cruiser and by the sampling tool (capturing approximately

1,000 samples with r = 25 hops). It also includes the results of a short crawl,7 a sam-

pling technique commonly used in earlier studies (e.g., [60]). We interleaved running

these measurement tools to minimize the change in the system between measurements

of different tools, in order to make their results comparable.

Examining Figure 5.8, we see that the full crawl and sampling distributions are

quite similar. The sampling tool finds slightly more peers with lower degree, compared

to the full crawl, in accordance with our expectations described above. We examined

several such pairs of crawling and sampling data and found the same pattern in each

pair. By comparison, the short crawl exhibits a substantial bias towards high degree

7A “short crawl” is a general term for a progressive exploration of a portion of the graph, such
as by using a breadth-first or depth-first search. In this case, we randomly select the next peer to
explore.
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FIGURE 5.8: Comparison of degree distributions observed from sampling versus exhaustively

crawling all peers
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peers relative to both the full crawl and sampling. We computed the KS statistic

(D) between each pair of datasets, presented in Table 5.3. Since the full crawl is a

close upper-bound of the true degree distribution, and since sampling’s distribution

is lower, the error in the sampling distribution relative to the true distribution is

D ≤ 4.3. On the other hand, because the short crawl data exceeds the full crawl

distribution, its error relative to the true distribution is D ≥ 12. In other words, the

true D for the sampling data is at most 4.3, while the true D for the short crawl

data is at least 12. It is possible that sampling with MRWB produces more accurate

results than a full crawl (which suffers from distortion), but this is difficult to prove

conclusively.

Having demonstrated the validity of the MRWB technique, we now turn our at-

tention to its efficiency. Performing the walk requires n · r queries, where n is the

desired number of samples and r is the length of the walk in hops. If r is too low,

significant bias may be introduced. If r is too high, it should not introduce bias,

but is less efficient. From graph theory, we expect to require r ≥ O(log |V |) for an

ordinary random walk.

To empirically explore the selection of r for Gnutella, we conducted many sets

of sampling experiments using different values of r, with full crawls interspersed be-

tween the sampling experiments. For each sampling experiment, we compute the KS

statistic, D, between the sampled degree distribution and that captured by the most

recent crawl. Figure 5.9 presents the mean and standard deviation of D as a function

of r across different experiments. The figure shows that low values of r (≤ 10) can

lead to enormous bias (D ≥ 40). The amount of bias decreases rapidly with r, and

low bias is observed for r ≥ 25 hops. However, in a single experiment with r = 30

Short Crawl Full Crawl Sampling

Short Crawl — 12.0 16.1

Full Crawl 12.0 — 4.30

Sampling 16.1 4.30 —

TABLE 5.3: KS statistic (D) between pairs of empirical datasets
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FIGURE 5.9: Difference between sampling and a crawl as a function of walk length. Each experi-

ment was repeated several times. Error bars show the sample standard deviation.

hops, we observed D > 30, while all other experiments at that length showed D < 9.

Investigating the anomalous dataset, we found that a single peer had been selected

309 out of 999 times.

Further examining the trace of this walk, we found that the walk happened to

start at a peer with only a single neighbor. In such a case, the walk gets stuck at that

peer due to the way Metropolis–Hastings transitions to a new peer y with probability

only degree(x)
degree(y)

. When this “stuck” event occurs late in the walk, it is just part of the

normal re-weighting to correct for a regular random walk’s bias towards high degree

peers. However, when it occurs during the first step of the walk, a large fraction of

the walks will end at the unusual low-degree peer, resulting in an anomalous set of

selections where the same peer is chosen many times.

One way to address this problem is to increase the walk length by requiring

r ≥
maximum degree

minimum degree
· log |V |.

However, this reduces the efficiency of the walk. More importantly, we typically

do not accurately know the maximum degree, i.e., while increasing r decreases the

probability of an anomalous event, it does not preclude it. Therefore, we suggest
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the following heuristic to prevent such problems from occurring. During the first few

steps of the walk, always transition to the next peer as in a regular random walk;

after the first few steps, use the Metropolis–Hastings method for deciding whether to

transition to the next peer or remain at the current one. This modification eliminates

the correlations induced by sharing a single starting location, while keeping the walk

length relatively short. We are experimenting with this modification in our ongoing

work. In any case, such anomalous data sets can easily be detected (and discarded) by

the presence of the same IP address being selected a statistically improbable number

of times. In light of these considerations, we regard a choice of r = 25 as a safe

walk length for Gnutella. Choosing r = 25, we can collect 1,000 samples by querying

25,000 peers, over an order of magnitude in savings compared with performing a full

crawl which must contact more than 400,000.

With respect to execution time, preliminary results show than an implementa-

tion of ion-sampler with r = 25 hops has execution time comparable using Cruiser

to capture the entire network, or around 10 minutes. While ion-sampler contacts

significantly fewer peers, walks are sequential in nature which limits the amount of

parallelism that ion-sampler can exploit. As discussed earlier, while longer execu-

tion time has a negative impact on the accuracy of Cruiser’s results, ion-sampler’s

results are not significantly impacted by the time required to perform the walk (as

demonstrated in Section 5.4.4 where we simulate walks of 10,000 hops). In our initial

implementation of ion-sampler, a small fraction of walks would get “stuck” in a

corner of the network, repeatedly trying to contact a set of departed peers. While

the walks eventually recover, this corner-case significantly and needlessly delayed the

overall execution time. We added a small cache to remember the addresses of unre-

sponsive peers to address this issue.

In summary, these empirical results support the conclusion that a Metropolized

Random Walk with Backtracking is an appropriate method of collecting measure-

ments from peer-to-peer systems, and demonstrate that it is significantly more ac-

curate than other common sampling techniques. They also illustrate the dramatic

improvement in efficiency and scalability of MRWB compared to performing a full

crawl. As network size increases, the cost of a full crawl grows linearly and takes
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longer to complete, introducing greater distortion into the captured snapshots. For

MRWB, the cost increases logarithmically, and no additional bias is introduced.

5.6 Discussion

5.6.1 How Many Samples are Required?

An important consideration when collecting samples is to know how many sam-

ples are needed for statistically significant results. This is principally a property of

the distribution being sampled. Consider the problem of estimating the underlying

frequency f of an event, e.g., that the peer degree takes a particular value. Given N

unbiased samples, an unbiased estimate of f is f̂ = M/N where M is the number of

samples for which the event occurs. f̂ has root mean square (RMS) relative error

σ =
√

Var(f̂)/f =
√

(1 − f)/fN.

From this expression, we derive the following observations:

• Estimation error does not depend on the population size; in particular the

estimation properties of unbiased sampling scale independently of the size of

the system under study.

• The above expression can be inverted to derive the number of samples Nf,σ

required to estimate an outcome of frequency f up to an error σ. A simple

bound is Nf,σ ≤ 1/(fσ2).

• Unsurprisingly, smaller frequency outcomes have a larger relative error. For

example, gathering 1,000 unbiased samples gives us very little useful information

about events which only occur one time in 10,000; the associated σ value is

approximately 3: the likely error dominates the value to be estimated. This

motivates using biased sampling in circumstances that we discuss in the next

subsection.

The presence of sampling bias complicates the picture. If an event with underly-

ing frequency f is actually sampled with frequency f0, then the RMS relative error
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acquires an additional term (1− f0/f)2 which does not reduce as the number of sam-

ples N grows. In other words, when sampling from a biased distribution, increasing

the number of samples only increases the accuracy with which we estimate the biased

distribution.

5.6.2 Unbiased versus Biased Sampling

At the beginning of this chapter, we set the goal of collecting unbiased samples.

However, there are circumstances where unbiased samples are inefficient. For exam-

ple, while unbiased samples provide accurate information about the body of a distri-

bution, they provide very little information about the tails: the pitfall of estimating

rare events we discussed in the previous subsection.

In circumstances such as studying infrequent events, it may be desirable to gather

samples with a known sampling bias, i.e., with non-uniform sampling probabilities.

By deliberately introducing a sampling bias towards the area of interest, more rele-

vant samples can be gathered. During analysis of the data, each sample is weighted

inversely to the probability that it is sampled. This yields unbiased estimates of the

quantities of interest, even though the selection of the samples is biased.

A known bias can be introduced by choosing an appropriate definition of µ(x)

in the Metropolis–Hastings equations presented in Section 5.3 and altering the walk

accordingly. Because the desired type of known bias depends on the focus of the

research, we cannot exhaustively demonstrate through simulation that Metropolis–

Hastings will operate correctly in a dynamic environment for any µ(x). Our results

show that it works well in the common case where unbiased samples are desired (i.e.,

µ(x) = µ(y) for all x and y).

5.6.3 Sampling from Structured Systems

Throughout this chapter, we have assumed an unstructured peer-to-peer network.

Structured systems (also known as Distributed Hash Tables or DHTs) should work

just as well with random walks, provided links are still bidirectional. However, the

structure of these systems often allows a more efficient technique.
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In a typical DHT scheme, each peer has a randomly generated identifier. Peers

form an overlay that actively maintains certain properties such that messages are

efficiently routed to the peer “closest” to a target identifier. The exact properties and

the definition of “closest” vary, but the theme remains the same. In these systems, to

select a peer at random, we may simply generate an identifier uniformly at random

and find the peer closest to the identifier. Because peer identifiers are generated

uniformly at random, we know they are uncorrelated with any other property. This

technique is simple and effective, as long as there is little variation in the amount

of identifier space that each peer is responsible for. We made use of this sampling

technique in our study of the widely-deployed Kad DHT, in Chapter 9.

5.7 Summary

This paper explores the problem of sampling representative peer properties in large

and dynamic unstructured P2P systems. We show that the topological and temporal

properties of P2P systems can lead to significant bias in collected samples. To collect

unbiased samples, we present the Metropolized Random Walk with Backtracking

(MRWB), a modification of the Metropolis–Hastings technique, which we developed

into the ion-sampler tool. Using both simulation and empirical evaluation, we show

that MRWB can collect approximately unbiased samples of peer properties over a

wide range of realistic peer dynamics and topological structures.
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CHAPTER 6

Static Peer Properties

Portions c© 2006 IEEE. Reprinted, with permission, from A. Rasti,

D. Stutzbach, and R. Rejaie, “On the long-term evolution of the two-tier

Gnutella overlay,” in Proc. Global Internet Symposium, Barcelona,

Spain, Apr. 2006.

Static peer properties are characteristics of the peer independent of how they are

connected to the rest of the overlay. This chapter will briefly examine the geographic

distribution of peers, then focus on the file-sharing habits of peers.

6.1 Geography

We examine the geographic location of ultrapeers in Gnutella using snapshots

captured by Cruiser. Using a large selection of captured snapshots, we examine how

the geographic composition of ultrapeers changes with time-of-day (in Figure 6.1b),

as well as how it varied over the course of one year (in Figure 6.1a). When examining

changes over the course of a year, we selected snapshots taken from approximately the

same time of day, 3pm Pacific Standard Time, to reduce noise caused by time-of-day

effects.
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FIGURE 6.1: Breakdown of ultrapeers by continent
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We examine the breakdown of ultrapeers across different regions and countries

using GeoIP 1.3.14 from MaxMind, LLC. Figure 6.1a shows the distribution of Gnu-

tella clients across four regions, namely North America (NA), South America (SA),

Europe (EU), and Asia (AS) that collectively make up 98.5% of the total ultrapeer

population. This figure reveals that a majority of Gnutella ultrapeers are in North

American (80%) with a significant fraction (13%) in Europe. Furthermore, the user

population of different regions have grown proportionally over time. The distribution

of user populations across different countries has also grown proportionally, except

for China where client population has dropped significantly (94%). Clients in US,

Canada, and UK make up 65%, 14%, and 5% of the total population, respectively1.

The remaining countries made up less than 2% each, but make up 16% in total.

Thus, while the Gnutella network is dominated by predominately English-speaking

countries, around one-fifth is composed of users from other countries.

Figure 6.1b shows how the geographic distribution changes over a 24-hour period,2

demonstrating the effect of different time zones on the composition of user popula-

tion. While clearly discernible, overall the effect is weak, with North American users

forming the majority regardless of the time of day.

This section on the geographic location of peers is based on co-authored material

with Amir Rasti and Prof. Reza Rejaie. The snapshots were collected by me, while

Amir Rasti determined the geographic position of the peers and produced the graphs.

The text was written jointly by myself, Amir Rasti, and Prof. Reja Rejaie. Portions

of this material appeared previously in [17].

6.2 File Properties

During the past few years, a handful of previous studies have characterized the

distribution of shared files in various P2P file sharing applications [57, 59, 60, 62].

1These values are from the snapshot taken on 9/20/05 and are similar to the other values observed
during the study period, as shown in Figure 6.1a.

2We noticed that, the population of North American and European clients peak at around 7pm
and 11am PDT with 86% and 24%, respectively. This figure indicates that the 3pm snapshots used
in Figure 6.1a capture roughly average daily population, i.e., not at any of the peaks.
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While these studies shed an insightful light on the characteristics of files in file-sharing

applications, they have several limitations. First, almost all the previous studies

have focused on a subset of peer population in their target file-sharing applications

(i.e., less than 20k peers). To our knowledge, none of these studies have verified

whether the captured peers are indeed representative of the entire population. Second,

many of the previous studies (except [57, 62]) are more than three years old and

thus rather outdated. During the past few years, P2P file-sharing applications have

significantly grown in size and have incorporated new features. In particular, most

popular file sharing applications have adopted a two-tier architecture along with new

search mechanisms (e.g., dynamics querying in Gnutella) to improve their scalability.

In this section, we empirically characterize available files across reachable peers

in the modern Gnutella network. We present two new measurement methodologies

to capture an accurate snapshot of the system at a particular point of time. Using

Cruiser, we have captured more than 50 snapshots of the files available in Gnutella

that span over one year and each snapshot contains more than 100 million distinct

files. Using these snapshots, we examine properties of contributed resources (i.e., files

and storage space) by participating peers. We also leverage our unbiased sampling

tool, ion-sampler, for P2P systems developed in Chapter 5 to select a representative

subset of peers. We use ion-sampler to validate the characteristics derived from

complete snapshots captured by Cruiser.

Our main findings can be summarized as follows:

• Free riding has significantly decreased among Gnutella users during the past

few years and is significantly lower than in other P2P file-sharing applications

such as eDonkey.

• The number of shared files and contributed storage space by individual peers

are heavily skewed.

• The popularity of individual files is also heavily skewed, with a handful of files

being extremely popular while a majority of files are very unpopular.

• The most popular file type is the MP3 file, which accounts for over two-thirds

of all files and one-third of all bytes. Both the popularity and occupied space

by video files has tripled over the past few years. Furthermore, the number
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of video files are less than one-tenth of audio files but they occupy 25% more

bytes. Overall, 93% of bytes in the system are occupied by audio and video

files.

This section is based on co-authored material under submission to a journal, which

includes material previously presented at a conference [15]. The experimental work

regarding was performed by Shanyu Zhao under the direction of Reza Rejaie and

myself. The associated text was written by myself and Reza Rejaie.

6.2.1 Related Work

We are aware of only two other studies that focus on the characteristics of files

shared by users. First, Fessant et al. [62] examined characteristics of available files,

using data collected from 12,000 eDonkey clients over a three day period in 2003.

They show that the popularity of files stored in file-sharing systems is heavily skewed,

following a Zipf distribution. They also examine correlations in file preferences. When

two peers have 10 files in common, there’s an 80% chance they have at least one

more file in common. The probability is close to 100% if they have at least 50 files

in common. Second, Liang et al. [57] recently analyzed the nature and magnitude

of deliberately corrupted files (“pollution”) in Kazaa. To combat P2P sharing of

copyrighted content, some companies intentionally inject decoy files, which have the

same file name as a popular song. Liang et al. developed a multi-threaded crawler

that queries all 30,000 Kazaa super-nodes for seven popular songs over the course of

one hour. They show that the popularity of different versions of a song also follows

a Zipf distribution. For most of the seven popular songs, over 50% of the copies are

polluted.

A few other studies have examined the files shared by users as part of broader

measurement studies on peer-to-peer systems. In 2001, Chu et al. [59] studied peer

churn and the distribution of file popularity. They found that file popularity follows

a log-quadratic distribution (which can be thought of as a second-order Zipf distri-

bution). Saroiu et al. [60] examined many characteristics of peers in Napster and
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Gnutella, such as their bottleneck bandwidth, latency, uptime, and number of shared

files in 2001. They found that the number of shared files was heavily skewed.

Our study differs from the few previous studies on the shared files in P2P systems

primarily by using a significantly larger population of peers (more than 1 million

concurrent peers). Additionally, we make use of unbiased sampling for validation

whenever possible.

Another group of studies passively captured P2P traffic at a router to characterize

exchanged files among peers. Gummadi et al. [45] analyzed a 200-day trace of Kazaa

traffic collected at the University of Washington, demonstrating that file transfers

in Kazaa do not follow a Zipf distribution and argued that this difference is due to

the “fetch-at-most-once” nature of downloads in file-sharing applications. Another

analysis of Kazaa traffic was conducted by Leibowitz et al. [47] at a large Israeli ISP.

They examined the changing popularity of exchanged files among peers and showed

that the data-sharing graph exhibits small-world properties. Note that the pattern

of exchanged files among peers affects the characteristics of shared files throughout

the system, but is subject to shorter-term trends. In contrast, the files shared by a

peer may be the result of transfers over the course of months or years, followed by a

gradual pruning of unwanted files. In summary, these studies on exchanged files are

closely related and complement our work.

6.2.2 Measurement Methodology

Our goal is to capture a snapshot of the Gnutella network at a given point of time

that contains (i) all participating peers and (ii) the available files at each peer in

the overlay (a file snapshot). In essence, we need to capture snapshots of the overlay

topology and annotate each peer with its available files. A common approach to

capture a snapshot is to use a P2P crawler.

Previous studies adopt one of the following ad-hoc sampling schemes to capture

a partial snapshot of a P2P system: (i) Partial Snapshot Through a Short Crawl:

Some studies periodically capture a small subset of participating peers (i.e., a partial

snapshot) through a short crawl [60], (ii) Periodic Probe of a Fixed Group: Other
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studies identify a subset of some participating peers (using a partial crawl or passive

monitoring) and periodically probe the same group of peers to collect information

about their available files [59]. In the absence of any solid understanding of churn and

file characteristics in P2P systems, it is not clear whether these sampling strategies

capture a representative population of peers. In Chapter 5, we showed that these

ad-hoc sampling techniques could lead to significant bias towards the properties of

the short-lived or high degree peers [16].

We developed the following two measurement methodologies to capture lists of

shared files in the Gnutella network: (i) Capturing complete snapshots, and (ii) Cap-

turing unbiased samples. We describe these measurement approaches in the following

subsections. Capturing complete snapshots is our primary characterization technique

and we use unbiased sampling for validation.

6.2.3 Capturing Complete Snapshots

Our goal is to capture the entire population of participating peers in the Gnutella

network (i.e., a complete snapshot) within a short period to minimize any potential

bias in our characterization. The time required to obtain the list of available files

at individual peers is significantly longer than for obtaining neighbor information.

For example, obtaining a list of neighbor peers from a peer may take less than a

second whereas the list of available files may take several minutes to download if the

peer has many files. In summary, a topology crawl is significantly faster than a file

crawl. Therefore, we decouple topology and content crawls to improve the accuracy

of captured snapshots and conduct our snapshots in three steps as follows: First, we

conduct a topology crawl to quickly capture all participating peers and their pair-

wise connectivity, i.e., capturing the overlay topology. Second, we conduct a content

crawl and collect the list of files available at each one of the peers identified during

the topology crawl. Third, once the content crawl is completed, we conduct another

topology crawl in order to identify those long-lived peers in the initial snapshots that

remained in the system during the entire content crawl. At the end of these three

steps, we create a snapshot of the overlay topology where each node is annotated with
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its available file and a label that describes whether it is long- or short-lived. Since

some of the captured peers in the first topology crawl depart the system during the

content crawl, the collected content in our measurement is slightly biased towards

peers with longer uptime. This motivates our second technique, unbiased sampling,

described in the next subsection.

Cruiser can perform a topology crawl for more than two million Gnutella peers in

less than 15 minutes, and perform a content crawl within 5.5 hours, i.e., capturing

the annotated snapshot takes 6 hours, (15min + 5.5hr + 15min). During the content

crawl, Cruiser collects the file name and content hash (SHA1) for each shared file on

every reachable peer, resulting in a log file more than 10 GB in size.

6.2.4 Capturing Unbiased Samples

Capturing complete snapshots is a heavy-weight operation that provides a tremen-

dous amount of information. However, even with a fast crawler, there will inevitably

be some distortion as the network changes while the crawler operates. Sampling

is a useful, light-weight alternative that does not suffer from distortion. However,

commonly-used sampling techniques for measuring peer-to-peer systems tend to in-

troduce considerable bias. We made use of the ion-sampler tool developed in Chap-

ter 5 to collect unbiased samples. The tool allows us to gather many samples at

once by running many walks in parallel. For this study, we use 1,000 parallel walks.

We use ion-sampler to select peers, then gather the list of files available from each

selected peer.

While sampling does not suffer from distortion, it provides fewer details than a

full crawl, particularly about unusual peers, e.g., in the tail of distributions. For these

reasons, we employ sampling to validate the results from complete snapshots.

6.2.5 Dataset

We captured more than 50 snapshots of the Gnutella network, annotated with

the list of files available at each peer. Our snapshots consists of daily snapshots from

consecutive days during the following intervals: 6/8/2005–6/18/2005, 8/23/2005–
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9/9/2005 and 10/11/2005–10/21/2005.3 Furthermore, we have collected 24 snap-

shots, roughly once per week between 11/29/2005 and 05/30/2006.4 To avoid any

time-of-day effects, each snapshot was captured at approximately the same time-of-

day (2pm PDT). These snapshots enable us to examine characteristics of available

files in the system over both short and long timescales (i.e., several days and several

months). Additionally, we use unbiased samples collected on June 16th, 2006 and

July 4th, 2006 to validate our finding in Section 6.2.7.

Figure 6.2a depicts the number of ultrapeers and leaf peers across captured snap-

shots during our measurement period. A subset of peers in each snapshot are un-

reachable by our crawler for one of the following reasons: (i) firewall or NAT blocking

incoming traffic, (ii) severe network congestion or overloaded processor at the peer,

(iii) peer departure, or (iv) the peer does not support the Browse Host protocol. Fig-

ure 6.2b shows the percentage of ultrapeers, leaf peers, and the total population in

individual snapshots that were successfully contacted by the file crawler. This figure

shows that in average around 50% of ultrapeers, 12% of leaf peers and 18% of the to-

tal population are reachable by the file crawler. Table 6.1 presents the minimum and

maximum value for the percentage of peers within each group (ultrapeer, leaf, total

population) for four different reasons across all snapshots. “TCP Refused” refers to

attempts that were rejected by a TCP RST message. “Timeout” refers to attempts

that did not receive any response. “Conn. Lost” refers to attempts that established a

Type TCP Refused Timeout Conn. Lost App. Refused

Ultrapeer 31.30%–46.10% 1.74%–13.25% 1.78%–6.80% 0.97%–2.30%

Leaf Peers 53.53%–72.13% 1.12%–3.85% 4.24%–23.16% 1.27%–3.06%

All Peers 31.63%–46.74% 1.75%–13.03% 1.81%–7.08% 0.97%–2.30%

TABLE 6.1: The range of percentage of peers that failed during the file crawl for various reasons

across all snapshots

3We are missing snapshots for 9/6/2005, 9/8/2005, 10/17/2005, and 10/29/2005 due to a mixture
of software, network, and power failures.

4The detailed characteristics of individual snapshots are available online at
http://mirage.cs.uoregon.edu/P2P/files/.

http://mirage.cs.uoregon.edu/P2P/files/
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TCP connection, but the connection closed before the file list could be fully retrieved.

Finally, “App. Refused” refers to attempts where TCP connected, but the request

for the list of files was rejected at the application level. In a few cases, our crawler

machines were under heavy load by other users during our crawls, leading to a large

percentage of timeouts and lost connections. In the typical case, these values were

only a few percent. Since ultrapeers are not allowed to be firewalled by the Gnutella

protocol, any reported connection error for ultrapeers indicates that the contacted

peer has departed. However, connection errors for leaf peers might occur due to peer

departure or a firewall.5 In Chapter 7, we will show that about half of all leaf peers

captured in a topology crawl leave the overlay within a 5 hour period. Independent

online statistics [105] report that around 70% of leaf peers in the Gnutella network

are firewalled. These evidences support the accuracy of the high ratio of connection

errors that we experienced for leaf peers (in the column labeled “TCP Refused”). In

summary, while we aim to capture complete snapshots, we can successfully contact

only 20% of all peers in one snapshot (around half a million peers) to obtain their

list of available files primarily due to two reasons: (i) the number of departed peers

during the long file crawl, and (ii) the large number of leaf peers behind firewalls.

6.2.6 Challenges and Problems

We briefly discuss several interesting problems that we experienced during data

collection and data processing.

Low-bandwidth TCP Connection: Although Cruiser has a timeout mechanism

that closes any idle connections after 20 seconds, we noticed that some crawls do not

complete after the crawling queue becomes empty. Further examinations revealed

that around 80 peers in each crawl send their data at an extremely low rate (around

20 bytes per second) which prevents Cruiser from closing their connections. We in-

structed Cruiser to terminate a crawl a few minutes after its crawling queue becomes

empty. Given the negligible number of these misbehaved peers, this does not signifi-

cantly affect our analysis.

5We are not aware of any reliable technique to distinguish between these two scenarios.
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File Identity: We use the content hash of a file returned by the target peer to

uniquely identify individual files. In our initial measurements, we observed many files

with the same name but different content hashes (e.g., setup.exe, login.bmp). This

illustrates that the trimmed (or even complete) filenames used by previous studies

(e.g., [59]), are not reliable file identifiers. We discovered around 3,500 files without

a content hash value in each snapshot and eliminated them from our analysis.

Post-processing: To compute the popularity of individual files in the system, we

needed to keep track of more than 100 million distinct files discovered in each snap-

shot. The large number of files resulted in memory bottlenecks in our analysis. We

leveraged the skewed distribution of popularity to address this problem as follows. We

divide captured peers in a snapshot into seven segments where each segment contains

a random subset of the peers. Then, we calculate the popularity of files within each

segment, trimming all files with fewer than 10 copies in a segment, and combine all

the trimmed segments into a single snapshot. This approximation eliminated several

million distinct files and prevented memory bottlenecks during our post-processing.

While this prevents us from performing analysis on the least popular files (with fewer

than 70 copies in the entire network), it does not significantly affect conducted anal-

ysis on more popular files.

6.2.7 Empirical Observations

6.2.7.1 Ratio of Free Riders

The success of P2P file sharing systems depends on the willingness of participating

peers to share their files. Previous studies have frequently reported that participating

peers do not have an incentive to contribute their resources (e.g., disk space and

network bandwidth) to the system and thus only use resources offered by others, i.e.,

become free riders. Adar et al. [54] report that 66% of Gnutella peers were free riders

in 2000, while a study by Saroiu et al. in 2002 [60] found 25% were free riders, with

75% of peers sharing less than 100 files. A recent study also report 68% of peers are

free riders in eDonkey [62].
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Table 6.2 presents the range (minimum–maximum values) for the number of ul-

trapeers (first row), leaf peers (second row) and total peers (last row) across all

snapshots. We further divide ultrapeers (row 3 and 4) and leaf peers (row 5 and 6)

into short-lived and long-lived based on their presence in the second topology crawl

as we discussed in Section 6.2.2. These grouping reveal any potential differences in

the free riding between ultrapeers and leaves as well as long- versus short-lived peers.

For each one of the above groups, the corresponding row in Table 6.2 presents the

range of the following properties across all snapshots: (i) the number of contacted

peers that provided their sharing list (2nd column), (ii) the percentage of free riders

(3rd column), and (iii) the average number of shared files among peers in each group.

Table 6.2 shows several interesting points as follows. The percentage of free riders

in Gnutella has significantly dropped from 25% in 2002 [60] to around 13% among

all participating peers (i.e., last row) and is drastically lower than the 68% recently

reported in eDonkey [62]. We speculate that several factors have contributed in the

observed drop in the percentage of free riders including the increase in access link

bandwidth for average Internet users and active marketing efforts by the Gnutella

vendors encouraging their users to share. Table 6.2 reveals that the percentage of free

riding among ultrapeers (9.0–10.5%) is somewhat lower than that in leaf peers (10.8–

15.9%). However, on average leaf peers share more files. Since leaf peers constitute a

Contacted Peers Free Riders(%) Files/Peer

Ultra 94,329–188,107 8.96–10.54 324–358

Leaf 253,164–395,682 10.81–15.85 347–406

Long-lived Ultra 69,441–147,435 9.27–10.78 320–354

Short-lived Ultra 24,888–40,672 8.08–9.77 335–371

Long-lived Leaf 166,241–240,969 11.39–16.93 369–437

Short-lived Leaf 86,923–154,713 9.93–13.79 316–358

Total 410,252–552,702 10.63–13.41 340–393

TABLE 6.2: Percentage of free riders, its breakdown across different groups, and the mean number

of shared files among peer
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larger portion of the total population (86–90%), their behavior has a greater impact

on system performance. Long-lived peers appear to have a slightly higher percentage

of free riders compared to short-lived peers. The correlation between lifetime and

number of files shared is inconclusive. Long-lived leaf peers share more files than

short-lived leaf peers, but long-lived and short-lived ultrapeers share about the same

number of files.

6.2.7.2 Degree of Resource Sharing Among Cooperative Peers

We now focus our attention on cooperative peers and characterize their willingness

to contribute their resources (i.e., both files and storage space). During our analysis,

we noticed that the sharing lists of many peers contain duplicate files. This occurs

because most Gnutella clients simply put various folders with potentially duplicate

content under the sharing folder. We have excluded all duplicate files from captured

sharing lists (which account for around 10 million files or roughly 9% of all captured

files) in our results.

Presenting these distributions as histograms results in a “messy”, difficult-to-

interpret tail of the distribution, due to the small number of peers in that region. This

in turn makes it difficult to properly examine the slope of distribution. Presenting the

distribution as a Complementary Cumulative Distribution Function (CCDF) yields

a smooth tail without losing any information while retaining the linear slope that a

power-law distribution exhibits on a log-log scale (since
∫∞
x u−αdu ∝ x−α). Toward

this end, we compute the CCDF of the number of shared files and shared bytes

per peer for individual snapshots. To present the variability of these distributions

across all snapshots in a compact and clear fashion, we compute the MIN-CCDF and

MAX-CCDF, defined as follows:

MIN-CCDF(x) = min(CCDFi(x) for all snapshots i)

MAX-CCDF(x) = max(CCDFi(x) for all snapshots i)

Figures 6.3a and 6.3b present the MIN-CCDF and MAX-CCDF of shared files

and shared bytes across all snapshots, i.e., the CCDFs from all the snapshots fall
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in between the MIN-CCDF and MAX-CCDF curves in the corresponding graph.

Figures 6.3a and 6.3b also include the CCDF for shared files and shared bytes per

peer based on samples collected with ion-sampler, to verify whether the results

from complete snapshots are significantly affected by distortion or not (as described

in Section 6.2.2). Note that the MIN-CCDF and MAX-CCDF curves in both figures

are very close which indicates that the the CCDF for shared files and shared bytes per

peer across all snapshots are very stable. Furthermore, the CCDFs from sampling

are consistent with the results from complete snapshots, except in the tail of the

distribution where the precision of sampling is low.

To test these distributions for power-law behavior, we recall that power-law dis-

tributions are scale-free. This means that the “slope” (α) of distribution is consistent

over many orders of magnitude on a log-log scale in the tail of the distribution. While

the histograms presented in the conference version of this work appear approximately

linear [15], it is not possible to closely fit a line over the entire range of x values due

to the subtle downward curvature.6 This curvature is more apparent in the CCDFs in

Figures 6.3a and 6.3b. Based on these considerations, the distributions of the number

of files and bytes shared by individual peers are heavily skewed but do not appear to

follow a power-law. Most peers share a moderate amount of files (or bytes) while a

few peers contribute an enormous amount of content (or space). The median value

for shared files is around 70 files while 0.01% of peers share more than 7,500 files.

The median value of shared space is around 650 MB while 0.1% of peers contribute

more than 85 GB.

Correlation between Contributed Files and Bytes: Saroiu et al. [60] reported

a strong correlation between the number of shared files and the volume of shared

data across Gnutella peers in 2002. Figure 6.4a shows this correlation as a scatter-

plot across all cooperative peers in one snapshot (June 13th, 2005). Each point in

this figure represents the number of shared files versus the shared disk space for each

cooperative peer. We observe a greater variability than what has been reported by

Saroiu et al. in 2002. However, this may simply be due to the larger number of data

6We also found that it was not possible to closely fit a shifted Pareto distribution to any of these
three distributions.
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points in our scatter-plot. To verify this issue, we sampled one out of every hundred

data points in Figure 6.4a and the selected samples are shown in Figure 6.4b. Figure

6.4b reveals a strong correlation between the number of files and the number of bytes

contributed by each peer which was obscured in Figure 6.4a. We performed a least-

squares fit to a line through the origin (0 files = 0 bytes), finding a slope of 3.544 MB

per file. This is consistent with the size of a MP3 file that is a few minutes long (i.e.,

a typical song). Figure 6.4c shows the correlation between the contributed bytes and

files by each peer using the data gathered by ion-sampler on June 16th, 2006—more

than a year after the presented snapshot data in Figure 6.4a. Figure 6.4c fits to the

same line and is consistent with the results from complete snapshots.

To gain a deeper insight about the correlation between contributed files and bytes,

we derive the CCDF distribution of file size among all files in individual snapshots.

Figure 6.5a depicts the CCDF distribution of file size in two snapshots that are six

months apart in a linear-log scale. Figure 6.5a shows that the distribution of file size

has changed very little between the two snapshots that are six months apart. This

figure also indicates that 60% of all files are a few megabytes in size (i.e., the graph has

a knee between 1 MB and 10 MB). Furthermore, the majority of other files (around

40%) are smaller than 1 megabyte in size. Figure 6.5b shows the same CCDFs for

file size distribution of two snapshots on a log-log scale. This figure illustrates that a

very small portion of files (around 0.1%) have size larger than 1 gigabyte.

6.2.7.3 File Popularity Distribution

The distribution of popularity for individual files throughout the system is an

important property that shows the degree of similarity and thus availability of indi-

vidual files among participating peers. Chu et al. [59] showed that the file popularity

follows a log-quadratic distribution, which can be viewed as a second-order power-law

distribution, among Gnutella peers in 2001. Furthermore, Fessant et al. [62] recently

reported a Zipf distribution for the file popularity in eDonkey. However, none of these

studies have captured a large number of peers.
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Figure 6.3c shows the range of CCDF for file popularity as a function of its rank

(in log-log scale) among cooperative peers across all snapshots. Each snapshot typ-

ically contains more than 800 terabytes worth of content in more than 100 million

unique files based on information from 0.4 million peers, constituting 18.5% of iden-

tified peers. If we assume that unreachable peers have similar profiles, the volume

of available content in the Gnutella network is around 4,400 terabytes. Figure 6.3c

illustrates two points: (i) file popularity is heavily skewed, and (ii) the distribution

of file popularity has remained very stable across the eleven month measurement pe-

riod. A small number of files are very popular while for most files only a few copies

are available in the network. Again, we also present data collected using unbiased

sampling, which closely matches the snapshot data except for very unpopular files

where sampling has poor precision.

6.2.7.4 File Type Analysis

We have also examined the distribution of available files among Gnutella peers

across different types of video and audio formats. This basically illustrates what types

of content are available in the system and thus exchanged among peers. Chu et al. [59]

conducted similar analysis for Gnutella peers in 2001 and reported that audio files

constitute 67.2% of files and 79.2% of bytes. However, video files were significantly less

popular and only contributed 2.1% of files and 19.1% of bytes. Using our snapshots,

we analyze the various types of audio and video files based on file extensions.

Figure 6.6a and 6.6b depict the contribution of the most common file types in

the total number of files and the total number of bytes across cooperative peers,

respectively. As box-and-whisker plots, these figures present the variations of the

contribution by different file types across all snapshots by showing the 75th percentile

(the top of the box), 25th percentile (the bottom of the box), the median value (the

line through the box), the maximum value (the top of the line) and the minimum

value (the bottom line). The distribution of file types across all snapshots is fairly

consistent with respect to both files and bytes (i.e., all boxes are small). Note that

except for MP3 files, each file types individually make up at most a few percent of all
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files. MP3 audio files are significantly more popular than any other file type, making

up two-thirds of all files and occupying more than one third of all disk space in the

system.

Although non-media files (jpg, gif, htm, exe, txt) are among the top ten most

popular types, audio and video files collectively occupy more than 93% of bytes and

make up more than 73% of all files in the system. These figures also reveal that video

files (avi, mpg, wmv) are significantly larger than other file types in the system. The

audio files (MP3, wma, wav) account for 67% of files and 40% of bytes whereas video

files constitute around 6% of files but 52.5% of bytes among Gnutella peers (i.e., most

files are audio files, but most bytes are in video files). Comparing to the reported

results by Chu at al. in 2001 [59], video files have become three times more popular

and occupy almost three times more space in the system.

We are unable to apply our sampling technique for file type analysis because

it samples random peers not random files. Consequently, analyzing the file data

gathered with ion-sampler shows significant correlations based on the preferences

of the peers collected. For example, in one instance we saw that 16% of files had the

jpg extension, due to sampling two peers with large jpg archives.

6.2.8 Summary

This section presented a measurement-based characterization of available files in

the Gnutella file sharing network. We discussed the challenges in capturing an accu-

rate snapshot of available files in P2P file-sharing applications, and then presented two

new measurement methodologies to achieve this goal. We used our parallel crawler

and our peer sampler to obtain accurate snapshots of available files among peers in

the Gnutella network. Using these snapshots, we conducted analysis to provide a bet-

ter understanding of the distributions and correlations of available files throughout

the system.

We plan to continue this work in the following directions: We continue to col-

lect many more snapshots to characterize properties of Gnutella files over longer

timescales. Furthermore, we plan to further examine the models that properly cap-
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ture each characteristics of available files in Gnutella. These models can be used in

simulation based evaluations of file sharing applications.
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CHAPTER 7

Dynamic Peer Properties

One of the most important, and least understood, characteristics of peer-to-peer

systems is their dynamic nature. A peer joins the system when a user starts the

application, contributes some resources while making use of the resources provided by

others, and leaves the system when the user exits the application. We define one such

join-participate-leave cycle as a session. The independent arrival and departure by

thousands—or millions—of peers creates the collective effect we call churn. The user-

driven dynamics of peer participation must be taken into account in both the design

and evaluation of any P2P application. For example, the distribution of session length

can affect the overlay structure [11], the resiliency of the overlay [70], and the selection

of key design parameters [29]. Moreover, every simulation or analysis study of a peer-

to-peer system relies on some model of churn. Towards this end, researchers and

developers require an accurate model of churn in order to draw accurate conclusions

about peer-to-peer systems.

However, accurately characterizing churn requires fine-grained and unbiased in-

formation about the arrival and departure of peers, which is challenging to acquire in

practice, primarily due to the large size and highly dynamic nature of these systems.

Therefore, the characteristics of churn in large-scale P2P systems are not currently

well understood. Several measurement studies [45, 48, 106] have presented a high

level view (e.g., the CDF of session lengths [60] or median session length [45]) of

churn as part of broader characterizations of P2P systems. While these studies have
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revealed that peer participation is highly dynamic, their findings are dramatically

different. For example, the reported median session lengths varies from one minute

to one hour [5]. In the absence of a reliable model for churn, researchers must make

assumptions about the distribution of arrival times and session lengths that may be

incorrect.

This chapter takes a major step towards increasing our understanding of churn by

conducting deeper analysis and relying on more accurate measurements. One of our

contributions is to identify a number of key challenges in characterizing churn that

arise from factors such as measurement limitations, network conditions, and peer

dynamics. We then develop techniques to address these difficulties or at least bound

the resulting error. As a result, our measurements are significantly more accurate

and representative.

Our second contribution is an examination of churn at two levels: (i) Group-

level characteristics that capture the behavior of all participating peers collectively,

and (ii) Peer-level characteristics that capture the behavior of specific peers across

multiple appearances in the system over time. Furthermore, we examine some of

the underlying causes and implications of our findings on the design of P2P systems.

To ensure the broad applicability of our results, we study churn in three types of

widely-deployed P2P systems: Gnutella, an unstructured file-sharing system; Kad,

a Distributed Hash Table (DHT); and BitTorrent, a content-distribution system.

Examining multiple systems allows us to explore the similarities and differences in

churn behavior between different types of P2P systems. Our main results can be

summarized as follows:

• Group-level properties of churn exhibit similar behavior across all three appli-

cations, but per-peer properties in BitTorrent are significantly different.

• Session lengths are fit by Weibull or log-normal distributions, but not by the

exponential or Pareto.

• Past session length is a good predictor of the next session length in Gnutella

and Kad, but not BitTorrent.

• The availability of individual peers exhibits a strong correlation across consec-

utive days.
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• In BitTorrent, peers frequently remain in the system long after their downloads

complete.

The remainder of the chapter is laid out as follows. Section 7.1 presents the related

work on characterizing churn. Section 7.2 describes the three systems we examine

in more detail. Section 7.3 identifies common pitfalls in studying churn and how we

address them in our study. Sections 7.4 and 7.5 present our results, while Section 7.6

describes some key implications of our results on the design of P2P applications.

Finally, Section 7.7 concludes the chapter.

Material in this chapter was adapted from material previously published in con-

ference proceedings [19]. The material was co-authored with Prof. Reza Rejaie. The

experimental work and writing are entirely mine. Prof. Reza Rejaie provided technical

guidance and editorial assistance.

7.1 Related Work

We are not aware of any prior study that focuses primarily on churn in P2P

networks. However, several studies present a passing investigation of session length

as part of wider characterizations of P2P applications. We divide these studies into

two groups based on their measurement technique as follows:

Passive Monitoring: As part of a study on P2P flows in a large ISP network, Sen

et al. [48] use passive measurement at several routers to monitor flows in FastTrack,

Gnutella, and Direct-Connect. They present a CDF of the duration an IP address

is active (the ontime), based on a threshold, δ = 30 minutes, of inactivity. They

show that the ontime is heavy-tailed, but does not follow a Zipf distribution when

ranked. As part of a study on workload characterization in Kazaa, Gummadi et al. [45]

present session lengths based on passive monitoring of a router at the University

of Washington. They found that session lengths are heavy-tailed, with a median

session length of 2.4 minutes while the 90th percentile is 28.25 minutes. In general,

passive monitoring techniques to characterize churn are likely to underestimate session

lengths because some peers may not be continuously generating traffic through the
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observation point. Difficulties in correctly identifying peer-to-peer flows [3] can also

limit measurement accuracy. Furthermore, it is difficult to determine whether the

subset of captured users is representative of the entire P2P user population, especially

if data is collected at a small number of measurement points.

Active Probing: Several studies use active probing or crawling to characterize P2P

networks and present the behavior of session length across peers. Chu et al. [59]

present the session length distribution in Napster and Gnutella and fit it to a log-

quadratic distribution. In their insightful characterization of peers in Napster and

Gnutella, Saroiu et al. [60] present a CDF of session durations, showing session lengths

are heavily skewed. They also present CDFs of peer availability in these systems. Bus-

tamante and Qiao [68] monitored peers in Gnutella to motivate preferential neighbor

selection based on uptime. Their tool measures the length of sessions for peers which

return to the network during their measurement period, and they fit peer session

lengths to the Pareto distribution. More recently, Liang et al. [56] similarly provide a

CDF of session lengths for super-nodes in the Kazaa network, based on active probing.

Finally, Bhagwan et al. [61] examine availability in the Overnet DHT using probing.

They show there is little correlation between the availability of different peers. Prior

studies of BitTorrent [64, 65] have used tracker logs to show that session lengths are

heavily skewed. One study of BitTorrent [66] examines the lingering and downtime

distributions and conclude they are both exponentially distributed.

Each of these studies show that session-lengths are not Poisson, and some of the

studies further conclude that session lengths are heavy-tailed (or Pareto). Reports of

the median session length vary dramatically, from one minute to one hour (as summa-

rized in [5]). In this study, we identify common pitfalls in measuring churn, such as

biased peer selection and false negatives, which we believe are the main contributing

factors for the conflicting results reported by previous studies. Leveraging our more

accurate measurements, we find that session-lengths are not heavy-tailed or Pareto,

but are more accurately modeled by a Weibull distribution. Additionally, we conduct

a more detailed study of churn, exploring aspects such as the inter-arrival distribu-
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tion and correlations across sessions. Finally, our work compares churn characteristics

across different P2P systems.

7.2 Background

Before we discuss our methodology, we need to introduce the systems we examine.

The Gnutella and Kad overlays provide a keyword-search function that allows users to

locate files that have the keyword in the filename. Gnutella performs these lookups

using an unstructured topology, while Kad uses a DHT. BitTorrent, on the other

hand, forms an overlay to facilitate the rapid transfer of very large files (100+ MB)

to a large number of peers. In the following subsections, we briefly describe the

relevant aspects of these systems and introduce our datasets.

Overall, our goal is to measure the arrival and departure time of peers so that we

can compute characteristics such as session lengths and inter-arrival intervals. Each

system provides slightly different hooks for measurement, each with advantages and

disadvantages. The two most important properties are the precision in measuring

arrival and departure times and the ability to capture a representative set of sessions.

We address the issues of possible inaccuracies or bias in our data in Section 7.3.

Our datasets consist of two types: (i) centralized logs that capture the arrival

and departure time of each peer, and (ii) sequences of snapshots that record the

peers present at a particular time. By comparing snapshots, we can deduce when

a peer arrived and departed. The length of time required to capture a snapshot,

∆, determines the precision in determining the arrival or departure time. All of the

snapshots were captured with Cruiser, the fast, distributed P2P crawler developed in

Chapter 4. Cruiser operates by progressively exploring an overlay topology, querying

peers for a list of their neighbors, and adding newly discovered peers to its queue until

the queue is exhausted. The start time and length of our datasets are summarized in

Table 7.1.

Gnutella: Gnutella is currently one of the most popular P2P systems, with more

than 1 million simultaneous users [107]. It uses a two-tier overlay structure, similar
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to FastTrack and eDonkey. Most peers are leaf peers, while a small fraction of peers

act as ultrapeers. The leaf peers connect to a handful of ultrapeers, which index

the content of the leaves. Searches spread out from ultrapeers using a modified

expanding-ring search.

Our Gnutella data consists of snapshots of the entire Gnutella network taken with

Cruiser. Using a special crawler hook provided by modern Gnutella [108], Cruiser

can capture 1.3 million peers within 7 minutes. Since the snapshots capture all peers

in the system, they are necessarily representative. The datasets consist of five sets

of 48-hour periods of back-to-back snapshots, with crawl durations ranging from 4 to

10 minutes.

Kad: Kad is a Kademlia-based [24] P2P search network used by the eMule P2P

file-sharing software [109]. To our knowledge, Kad is the largest deployed DHT, with

more than 1 million simultaneous users. Similar to other DHTs, each peer has a

persistent, globally-unique identifier of length b bits (in Kad’s case b = 128 bits).

Keywords are hashed to b bits and stored on the peer with the closest matching

identifier. Each peer stores a structured routing table pointing to other nodes in the

network such that the expected number of overlay hops to perform any lookup is

O(log n), where n is the population size.

We used Cruiser to capture a subset of the DHT identifier space, called a zone.

As an input parameter, Cruiser accepts a zone, specified as a Kad ID address and

mask, analogous to an IP subnet address. We use the “slash notation” to specify Kad

ID zones. For example “0x594/10” specifies all Kad identifiers where the high-order

10 bits match the high-order 10 bits in the hexadecimal number 0x594. Monitoring a

larger zone includes more sessions, but requires more time to crawl, and thus decreases

the precision.

Since each peer selects its ID uniformly at random1, each zone is a uniformly

random sample of the Kad network as a whole and therefore representative. We used

1Technically, the identifiers are selected using a pseudo-random number generator seeded with
entropy collected by the operating system. Because the identifiers are 128 bits, the probability of
collisions occurring is extremely small.
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the Kad version of Cruiser to collect 48-hour slices of back-to-back snapshots of 4

different zones within the Kad overlay. The zone addresses and crawl durations (∆)

are given in Table 7.1 and Figure 7.1b.

BitTorrent: BitTorrent is a popular P2P application for distributing very large

files (100+ MB) to a large group of users. Unlike most P2P systems, which form

one large overlay, BitTorrent has a distinct overlay for each file. To download a file,

peers exchange different blocks of the content until each peer has the entire file. The

peers locate one another using a rendezvous point, called a tracker, whose address is

provided to new members out of band. Each new peer contacts the tracker via HTTP,

periodically sends an update of its progress to the tracker, and informs the tracker

when it departs. Each peer may receive the entire file across multiple sessions, [Bi.e.,

it may obtain only a subset of blocks in one session and resume the download later.

Many peers may give up without downloading the whole file [64]. The tracker logs

its interactions with peers, providing the arrival and departure times of peers with

one second resolution. While the tracker records the arrival time of all peers, the

departure time is only captured for peers which depart gracefully. We have obtained

Dataset Start Date Duration Kad Zone

Gnutella 1 Oct. 14, 2004 2 days

Gnutella 2 Oct. 21, 2004 2 days

Gnutella 3 Nov. 25, 2004 2 days

Gnutella 4 Dec. 21, 2004 2 days

Gnutella 5 Dec. 27, 2004 2 days

Kad 1 Apr. 13, 2005 2 days 0xab0/10

Kad 2 Apr. 16, 2005 2 days 0x594/10

Kad 3 Apr. 18, 2005 2 days 0xe14/10

Kad 4 Apr. 21, 2005 2 days 0x734/12

BitTorrent Red Hat Mar. 21, 2003 3 months

BitTorrent Debian Feb. 22, 2005 2 months

BitTorrent FlatOut Nov. 11, 2004 2 months

TABLE 7.1: Measurement collections
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tracker logs from three long BitTorrent networks: Debian ISO images, a Red Hat ISO

image, and a demo of the game FlatOut.

7.3 Pitfalls in Characterizing Churn

In the previous section, we described how our data was collected and the granu-

larity of the measurements. However, we have not yet addressed how to cope with

limitations of the data, such as peers missed during a crawl or sessions longer than

the measurement period. While we cannot address every possible event that might

introduce error into the measurement and analysis of churn, the following subsections

discuss the pitfalls most likely to cause significant error. In many cases, we are able

to overcome the problem entirely. In some cases, we must settle for bounding or

estimating the error.

7.3.1 Missing Data

One of the challenges in collecting data for studying churn is that it requires

continuous measurement. If the observation software crashes or loses network con-

nectivity, data will be missing, essentially breaking the dataset into two pieces. If the

gap is unnoticed and the data is processed as one piece, it may introduce considerable

error.

In Gnutella and Kad, our data is composed of a series of snapshots captured by a

crawler. Each snapshot contains the start time of the crawl. Examining the sequence

of these times, we did not find any significant gaps in the data. Within each dataset,

the time from the start of one crawl to the start of the next is reasonably close to the

mean. The distributions are shown in Figures 7.1a and 7.1b.

For BitTorrent, our data consists of logs from BitTorrent trackers which record

each event with 1-second granularity. In our data, typically there are just a few

seconds between each event. However, as shown in Figure 7.1c there are a few outlying

points with unusually large gaps between one event and the next. In total, we found

five significant gaps in the Red Hat log, two in the Debian log, and one in the FlatOut
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log. The shortest of these gaps is twenty minutes while the longest is eight hours.

All other inter-event intervals are less than 4 minutes. Although the Red Hat log has

been studied by other researchers [64, 110, 111], to our knowledge these gaps have

not been previously reported. We also checked if the clock ever ran backward, but

it did not. It seems very unlikely that an otherwise busy tracker receiving several

hits per minute would abruptly have an eight-hour period of silence. Therefore, we

conclude that during these gaps the tracker was not running or was experiencing

network connectivity problems. An alternative explanation is that the clock time on

the tracker was changed. Instead of using the entire logs, we restrict ourselves to the

largest contiguous portion between gaps.

7.3.2 Biased Peer Selection

The most common approach [56, 59, 60] for measuring churn has been to select a

set of peers and ping them at regular intervals to determine when their sessions begin

and end. However, polling a closed population of peers repeatedly captures sessions

from a small fraction of all peers (those who return regularly). This introduces bias

in two ways: (i) the potential for bias in selecting the peers and (ii) consecutive

sessions of the same peer are correlated (as we will show in Section 7.5.2). Selecting

peers based on criteria that are correlated with session length necessarily leads to

biased results. Selecting based on query responses [59, 60] may be biased if there is a

correlation between session length and number of files shared. Similarly, conducting a

partial crawl of the topology [60] may be biased due to a correlation between session

length and a peer’s degree [11]. One way around these difficulties is to monitor the

entire system, implicitly detecting new peers.

In BitTorrent, the tracker is a central monitoring point that captures the arrival

time of all peers and the departure time of all peers that depart gracefully. Sessions

that ended ungracefully were eliminated from our analysis (22% in Red Hat, 70% in

Debian, 27% in FlatOut). While tracker logs provide a comprehensive account for

a particular tracker, it is possible that different trackers see different behavior. To
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account for this, we present results from three different trackers, serving two different

types of files: two Linux ISO images and one game demo.

For Gnutella, we use snapshots of all the peers in the system collected with Cruiser

at approximately 7 minute intervals. For Kad, we use Cruiser’s Kad module to

capture all the peers within a particular zone of the DHT. Since each peer selects

its Kad ID uniformly at random, there is no correlation between a peer’s zone and

its session length. Unlike sampling a set of addresses and probing them, zones allow

us to monitor the arrival of new peers and therefore do not suffer the drawbacks of

closed populations. For these reasons, zones are a representative way of characterizing

the overall system behavior with respect to churn. In Section 7.3.4, we address the

possibility that some peers may be missing from the snapshots (i.e., false negatives).

7.3.3 Handling Long Sessions

Because we can only make observations for a finite length of time, we must care-

fully account for long sessions. Given a measurement window of length τ , we can

compute the length of each session that begins and ends within the window. How-

ever, this would lead to a significant bias towards shorter sessions. For example, we

could only observe a session of length τ if it started exactly at the beginning of our

measurements, whereas we would have τ opportunities to observe a session of unit

length. Worse still, we are not able to measure any sessions longer than τ .

We use the “create-based method” employed by Saroiu et al. [60] to overcome

this dilemma. We divide the measurement window into two halves, and only consider

sessions that begin during the first half. This provides equal opportunity to observe

session lengths less than τ
2
. We cannot make unbiased measurements of the length

of longer sessions using this method. However, we can observe how many sessions

started with a length greater than τ
2
, allowing us to count sessions that continue

past the end of our measurement window, even though we cannot measure them. In

summary, our sample includes all the sessions which begin in the time period [0, τ
2
],

either by measuring their session length or by noting that the session length is greater

than τ
2
.
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Our initial measurements, as well as previous studies [59], showed fluctuations in

network size correlated with the time of day. In this initial study, we are interested in

studying the average behavior and reserve exploring the influence of time of day for

future work. Therefore, we must capture all times of day roughly equally by either

choosing τ = k · 2 days, where k is a positive integer, or chosing τ ≫ 2 days.

7.3.4 False Negatives

Unlike BitTorrent, in Gnutella and Kad there is the possibility that a peer is

actually online even though it is missing from a snapshot. This could occur, for

example, due to significant network congestion between the observation point and the

peer. Even when the chance of false negatives is small, the impact on measurements

of long sessions is significant. For example, polling every 5 minutes with a 1% chance

of a false negative per peer can decrease the observed 1-day sessions by 94%. Because

false negatives are inaccuracies in the measurements themselves, we cannot directly

measure how often they occur. However, we can draw some inferences from the data.

We consider two types of false negatives that could theoretically occur:

• Systematic failures: Some peers may be very prone to being missed by

the crawler, perhaps due to routing instability between the observation point

and the peer. If the failure is permanent and the peer is never captured, no

sessions are observed and the peer is simply omitted from the data and does

not significantly impact the results. If the failure is intermittent, the peer will

appear to flap, frequently going up and down. In Section 7.5.3, we show that

few peers exhibit flapping behavior.

• Random failures: Random failures are cases where the crawler randomly

misses some fraction, λ, of peers during each crawl. Even if λ is quite low, the

cumulative probability of a false negative grows exponentially with the session

length. The observed session length distribution is therefore limited by the

exponential distribution with rate parameter λ. We can leverage this fact to

compute an upper-bound on λ as follows, using our Gnutella 1 dataset as an

example.
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We observed that 2.2% of sessions had a length of 1 day or more. Using the

mean crawl duration of ∆ = 6.7 min, we compute the predicted decrease in

these sessions according to the exponential distribution: exp
(
−λ · 1 day

∆

)
. For

example, if λ = 10%, then we would expect to observe only 1 in every 3.1

trillion sessions that are 1 day or longer. Since 2.2% is substantially more than

1 in 3.1 trillion, λ must be significantly smaller than 10%. We can compute an

upper-bound on λ by solving 2.2% = exp
(
−λ · 1 day

6.7 min

)
which yields λ = 1.8%.

In fact, λ must be significantly lower, otherwise the observation of 2.2% would

only be possible if nearly all sessions were at least 1 day in length.

Given an upper-bound on λ, we can compute an upper-bound on the number of

reduced observations as a function of session length, shown in Figure 7.2. Short

and moderate length sessions (up to an hour) are not significantly affected;

however, long sessions (5 hours and longer) may be dramatically undercounted.

We factor this limitation into our conclusions as we analyze our results.

7.3.5 Handling Brief Events

The granularity of polling can lead to measurement oversights. If a brief departure

is missed, two sessions may look like one longer session. On the other hand, very short

sessions may not be observed at all.

In BitTorrent, a centralized tracker records all events, so brief events are not a

problem. Even if the events are shorter than the logs’ granularity (1 second), they

are still recorded in order.

For Gnutella and Kad, we are limited by the snapshot granularity of around 7

minutes and 4 minutes, respectively. Very short sessions will be missing from the data,

but this does not adversely impact our observations of other sessions. Brief departures

pose a larger problem, as they may artificially inflate the number of observed long

sessions. However, in Section 7.5.3 we present evidence that few peers repeatedly

come and go, suggesting that the number of errors of this type is small. Moreover, it

is outweighed by the problem of false negatives, described in the previous subsection,

which causes the number of long sessions to be under-counted.
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116

7.3.6 NAT

Network Address Translation (NAT) devices present an obstacle to observing

churn in two ways. First, they can make it difficult to observe a peer at all, since it

is not possible to send the peer unsolicited packets to check its status. This could

prevent any NATed or firewalled peers from being included, as many as 73% of all

peers [105]. Second, if there are several peers behind a single NAT device, they may

all look like one peer with the NAT device’s external IP address. As a result, as long

as any of the actual peers is up, the single observed peer will appear to be up, creat-

ing one artificially long session. Typical home users with a NAT and only one peer

behind it do not pose a problem; however, erroneous data points will be collected if

a large organization has many users all connecting to the same P2P network through

a NAT device.

In BitTorrent, we don’t need to contact peers, since they contact the tracker,

overcoming the first difficulty. To overcome the second difficulty, we use a heuristic

to identify IP addresses which appear to be NAT devices with multiple peers and

eliminate those IP addresses from our dataset. BitTorrent clients generate a random

identifier on start-up, which is transmitted to the tracker and stored in the tracker

logs. If an IP address is downloading the same file using multiple identifiers simul-

taneously, we classify it as a NAT device with multiple peers. Table 7.2 shows the

number of IP addresses observed and eliminated from each log.

As a DHT, Kad requires all participating peers to be able to directly receive

unsolicited TCP and UDP packets. Therefore, none of the Kad peers are behind

NAT devices, eliminating the NAT problem. While there are NATed peers that make

Log Total IPs NAT (Eliminated)

BT Red Hat 115,016 9,022 (8%)

BT Debian 23,880 3,964 (17%)

BT FlatOut 1,250 64 (5%)

TABLE 7.2: Total IP addresses in BitTorrent logs and the fraction eliminated due to NAT
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use of the Kad overlay, they do not participate in the overlay itself and are not part

of our study.

For Gnutella, the snapshots captured by Cruiser contain all the peers directly con-

tacted as well as all of their neighbors, including NATed peers. Therefore, contacting

NATed peers is not necessary to establish their presence. However, we lack a good

heuristic for Gnutella to detect when there are multiple peers behind one NAT device.

This introduces a potential bias in our Gnutella data towards long sessions. Again,

the typical home user with a NAT device does not pose a problem; only large organi-

zations with multiple P2P users all behind one NAT device will cause measurement

errors.

7.3.7 Dynamic Addresses

DHCP and PPP dynamically assign IP addresses to hosts. Under normal circum-

stances, as long as the host remains up, its IP address will not change. Therefore,

dynamic address assignment is not a problem for measuring the length of sessions.

However, it can become problematic for measuring the gap between sessions or corre-

lations across consecutive sessions. When the peer is not continuously participating

in the P2P network, the peer’s host may have gone down and later returned with a

different IP address.

Dynamic address assignment can make it difficult to make conclusions about user

behavior. However, it is sometimes useful to know whether any peer is likely to be

available at a particular IP address. For example, imagine designing the bootstrap-

ping mechanism that helps integrate the peer into the overlay when the application

starts. When the application exits, it stores to disk a cache of IP addresses of other

peers so that when it starts again it can attempt to contact them. Ideally, the ap-

plication wants to store IP addresses that have a high probability of being up later.

It doesn’t matter if the IP address represents the same user; the important part is

whether there is a peer at that IP address. For these reasons, dynamic addresses are

not a serious problem as long as only appropriate conclusions are drawn from the

data.
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Studying user behavior requires persistent unique identifiers that precisely iden-

tify particular users across sessions even when their IP address changes. Kad is

the only one of the systems we examine that provide persistent unique identifiers.

While BitTorrent peers also use unique identifiers, these identifiers are not persistent

across sessions; the BitTorrent application selects a new identifier each time it starts2.

Characterizing the behavior using persistent identifiers is useful for the design of P2P

applications that store persistent state across sessions. Therefore, when studying be-

havior across sessions in Section 7.5, we examine the behavior of users in Kad and

the behavior of IP addresses in Gnutella and BitTorrent.

7.4 Group-Level Characterization

This section explores two fundamental properties of churn which do not rely on

maintaining peer identity across sessions as follows: (i) the inter-arrival time is the

time that passes from the start of one session to the start of the next session (not

necessarily by the same peer) and (ii) the session length is the time that passes from

the start of a session until the end of that session. In other words, the inter-arrival

distribution captures the pattern of when peers arrive and the session length distribu-

tion captures how long they stay in the system. Prior simulation and analysis studies

have typically assumed both distributions to be exponential [5, 29, 104], though some

studies have modeled the session length distribution as Pareto [69, 70] (i.e., heavy-

tailed) as suggested by earlier measurement studies [45, 48, 68]. We found that neither

exponential nor Pareto distributions were consistent with our session length data.

Additionally, to provide greater insight into the implications of the session length

distribution, Section 7.4.4 empirically examines how long peers in the system have

been up (the uptime) and Section 7.4.5 examines the power of uptime as a predictor

for how much longer peers will remain in the system (the remaining uptime).

Throughout Sections 7.4 and 7.5, we present many complementary cumulative

distribution functions (CCDFs). Tables 7.3 and 7.4 list the number of observations

2This is true of the official BitTorrent application at the time our traces were collected. More
recent versions of BitTorrent or third-party implementations may have different behavior.
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Dataset Fig. 7.1 Fig. 7.3,7.12 Fig. 7.4,7.5a Fig. 7.5b,7.5c Fig. 7.6 Fig. 7.9 Fig. 7.10 Fig. 7.11

Gnutella 1 430 N/A 5,624,972 N/A 154,804,229 5,670,886 2,850,712 3,118,797

Gnutella 2 714 N/A 11,713,861 N/A 263,595,662 11,700,224 8,697,797 3,182,355

Gnutella 3 561 N/A 9,743,605 N/A 221,638,443 9,749,129 6,573,694 3,368,625

Gnutella 4 390 N/A 13,232,322 N/A 154,978,617 13,256,624 9,579,572 3,834,708

Gnutella 5 423 N/A 12,117,124 N/A 155,671,531 12,116,071 8,550,825 3,737,315

Kad 1 844 N/A 7,104 N/A 404,751 7,136 5,037 2,299

Kad 2 810 N/A 6,326 N/A 390,874 6,303 4,348 2,254

Kad 3 845 N/A 6,161 N/A 397,301 6,175 4,280 2,135

Kad 4 2,573 5,676 2,723 N/A 337,722 2,713 2,205 540

BitTorrent Red Hat 2,457,473 43,956 25,782 4,058 804,296 5,627 2,294 147,536

BitTorrent Debian 9,386,976 160,020 28,047 7,250 5,856,787 13,590 16,729 137,382

BitTorrent FlatOut 9,387,684 1,050 648 398 8,409 129 52 5,542

TABLE 7.3: Number of observations for data presented in figures
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Dataset Observations 1 Hour 2 Hours 8 Hours

Gnutella 1 5,624,972 2,307,729 1,493,194 456,830

Gnutella 2 11,713,861 3,137,153 1,691,327 412,641

Gnutella 3 9,743,605 3,307,803 1,891,606 474,570

Gnutella 4 13,232,322 4,028,592 2,046,154 322,369

Gnutella 5 12,117,124 3,758,452 1,927,332 350,549

Kad 1 7,104 2,681 1,968 810

Kad 2 6,326 2,719 1,974 805

Kad 3 6,161 2,566 1,918 814

Kad 4 2,723 791 557 205

BT Red Hat 23,266 4,526 3,727 1,853

BT Debian 24,335 7,660 5,886 2,504

BT FlatOut 600 170 67 15

TABLE 7.4: Number of observations for Fig. 7.7 and 7.8

from each dataset used in constructing these CCDFs. The values vary from one figure

to another depending on what type of behavior we are observing.

7.4.1 Distribution of Inter-Arrival Time

The distribution of peer inter-arrival times is an important distribution for un-

derstanding churn because it captures the pattern of how peers arrive. To measure

inter-arrival times, we must be able to observe individual arrival events. In Gnutella,

this is not possible since tens of thousands of new peers arrive between two consecutive

snapshots. In contrast, measuring inter-arrival time in BitTorrent is straightforward

since tracker logs capture arrival times with one-second granularity. To examine inter-

arrival time in Kad, we use our Kad 4 trace which monitors a small fraction of the

network with 1 minute snapshots. However, even at 1 minute, the granularity is poor.

Therefore, we rely primarily on our BitTorrent data.

Figure 7.3 presents log-linear plots of the distribution of peer inter-arrival time for

four datasets: BT Red Hat, BT Debian, BT FlatOut, and Kad 4. All four datasets

appear roughly linear on the log-linear scale, which might suggest that the exponential

distribution is a good fit. However, for the FlatOut and Red Hat datasets, there is

slight curvature on the left side of the graphs, making a good fit impossible. For the

Debian datasets, there is also some curvature, but it is much less pronounced. The

Kad dataset, shown in Figure 7.3b, has poor granularity but does serve to illustrate
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that the inter-arrival behavior in Kad is at least roughly similar to that found in

BitTorrent.

In addition to the data, Figure 7.3 shows a fit of the exponential distribution,

indicating that there are more extreme values than are captured by that model. For

example, in the FlatOut data, 33% of inter-arrival times are less than 10 minutes,

while the exponential model predicts 9%. On the other hand, in the FlatOut data,

1.5% of inter-arrival times are longer than 10 hours, while the exponential model pre-

dicts 0.38%. Exponential distributions are typically used to model behavior resulting

from a large number of independent events. However, peer arrivals are not completely

independent. Users are less likely to be active during certain times of day (or during

certain days of the week), and a surge of arrivals may occur when a link to a file

appears on a popular website. Deviations from the exponential model are caused by

these correlations. Despite these deviations, some may still find it acceptable due to

its simplicity. However, a more accurate model is desirable.

Weibull distributions are a more flexible alternative to exponential distributions.

In fact, exponential distributions are a special case of the Weibull distributions where

the shape parameter is k = 1. For inter-arrival times, a Weibull distribution provides a

much better fit, most noticeably shown in Figures 7.3a and 7.3c, with scale parameter

k = 0.79 for Debian, k = 0.53 for Red Hat, and k = 0.62 for FlatOut. We found

the parameters of the distributions using the non-linear least-squares method on the

log-linear transform of the CCDF.

An alternative hypothesis is that over short time scales, inter-arrivals can be

described by an exponential distribution, but the parameter of the distribution varies

with the time of day. To explore this hypothesis, we divided the Debian dataset into 1

hour segments, containing a few hundred events each on average. For each segment,

we computed the best fit via Maximum Likelihood Estimators for several types of

distributions and computed the Anderson–Darling goodness-of-fit test statistic. At

the p = 5% level, neither exponential, Weibull, nor log-normal distributions regularly

provided good fits. We repeated the experiments on the Red Hat dataset which

contains only a few dozen events per hour on average. Exponential and Weibull

distributions were each able to fit the data in more than 93% of all cases. At the
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p = 5% level, we would expect at least 5% of all cases to fail the test, for a good

candidate distribution, so 93% is quite good. We did not examine the FlatOut data

in this way because it is too sparse to meaningfully divide into 1 hour segments.

An interesting question is: Why does the exponential distribution appear to be

a good candidate with the Red Hat data but not the Debian data? The Debian

data provides a larger number of events per 1 hour segment, which increases the

power of the Anderson–Darling goodness-of-fit test. Consequently, if exponential

(and Weibull) distributions are close, but imperfect, models of user behavior, they

might be accepted with a small number of data points but rejected when we supply

a large number of data points (i.e., enough data points for the test to detect the

difference). On the other hand, the difference could be to a fundamental difference

in user behavior between the two datasets. To explore this issue, we further divided

the Debian events into 6 minute segments so that each segment has a few dozen on

average. Only 28% of segments could be fit with an exponential distribution and

38% with a Weibull distribution, suggesting that there are fundamental differences in

inter-arrival patterns from one torrent to another.

7.4.2 Distribution of Session Length

One of the most basic properties of churn is the session length distribution, which

captures how long peers remain in the system each time they appear. Figure 7.4

presents the distribution of session length across different datasets for each system.

Figure 7.5a presents a different angle on the session lengths in BitTorrent using a wider

x-axis scale. These results demonstrate the following points: First, within a single

system, the distribution of session length from different datasets are very similar.

This implies that the distribution of session length does not significantly change over

time. Second, and more importantly, the distributions in different systems are similar,

suggesting that user behavior, which determines the session length distribution, is

consistent across different P2P systems. Third, session lengths clearly do not follow

the commonly-used exponential distribution, which features a sharp “knee” when

plotted on log-log scale due to the relative absence of large values.
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Prior studies [45, 48, 68, 69] have reported that peer sessions lengths are heavy-

tailed. A heavy-tailed distribution is one with the following property [36]:

P [X > x] ∝ x−α, as x → ∞, 0 < α < 2

The parameter α is called the tail index and is equal to the “slope” of the tail on

a log-log plot. As a result, if a distribution is heavy-tailed, on a log-log plot of the

CCDF the tail will appear linear with a “slope” between 0 and 2. Examining the tails

in our BitTorrent data, we find α does not fall in this range. By fitting a line to the

log-log transform of the tail of the data, we found α = 2.5 for Red Hat, α = 2.7 for

Debian, and α = 2.1 for FlatOut. Therefore, we must conclude that session lengths

in BitTorrent are not heavy-tailed.

Since neither the exponential nor heavy-tailed distributions proved consistent with

our observations, we investigated two other models that might provide a good fit:

log-normal distributions and Weibull distributions. These two models are not heavy-

tailed yet can include more extreme values than exponential distributions, making

them good candidates. We found that log-normal provided a decent fit for all three

BitTorrent datasets, but significantly overestimated the number of sessions longer

than one day in the Red Hat and Debian datasets. The Weibull distribution was able

to provide a tighter fit with shape (k) and scale (λ) parameters k = 0.34, λ = 21.3

for Red Hat, k = 0.38, λ = 42.4 for Debian, and k = 0.59, λ = 41.9 for FlatOut.

We additionally found that the BitTorrent data could not be closely fit by a shifted

Pareto distribution (which allows for slight curvature).

The Gnutella and Kad CCDFs (Figures 7.4a and 7.4b) exhibit slight downward

curvature, very similar to that seen in BitTorrent over the same scale (Figure 7.4c).

This suggests that they, too, are not heavy-tailed. However, due to the potential

for significantly under-counting the number of long sessions in Gnutella and Kad (as

described in Section 7.3.4), we cannot rule out the possibility that this curvature is a

measurement artifact. All of the Gnutella and Kad session length datasets fit tightly

to log-normal distributions and reasonably well to Weibull distributions.

In summary, while most sessions are short (minutes), some sessions are very

long (days or weeks). This differs from exponential distributions, which exhibit values
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closer together in length, and heavy-tailed distributions, which have more pronounced

extremes (years). The data is better described by Weibull or log-normal distributions.

We will explore the consequences of this further in the following subsections.

7.4.3 Lingering after Download Completion

We found the similarity of session length distributions between BitTorrent and the

other systems surprising. While Gnutella and Kad applications provide a keyword-

search feature and manage the downloading of many files, BitTorrent is designed to

download a single large file.3 Intuitively, we would expect users to exit BitTorrent soon

after the file transfer completes, which would tightly couple the session length with

the transfer time, suggesting a multi-modal distribution based on common access-link

bandwidths (and therefore common download durations). To investigate this issue,

we divide the BitTorrent sessions into two parts: (i) the time to completely download

the file and (ii) the additional time the peer lingers in the system. We call these the

completion time and the lingering time, respectively. Figures 7.5b and 7.5c depicts

the distribution of these two values, for sessions that download the entire file in a

single session (16–61% of all sessions, see Table 7.3). Interestingly, many peers linger

for a few hours after their download is complete, and a few peers linger for days or

weeks, particularly in the Red Hat and Debian traces. By comparing Figures 7.5a,

7.5b, and 7.5c, we can see that the tail of the session length distribution is dominated

by peers who are lingering long after their download has completed. Guo et al. [66,

Fig. 13(a)] also examine the lingering time distribution (which they call the “seeding

time”) and conclude it follows an exponential distribution due to its linear shape

on a log-linear plot. However, the significant curvature on the left side of their plot

(similar to our Figure 7.3c) is inconsistent with an exponential distribution but could

be modeled by a Weibull distribution.

3Modern versions of BitTorrent can manage several file downloads within one instance of the
application, but at the time of our data each file required a separate instance.
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7.4.4 Distribution of Peer Uptime

The previous subsections presented the distribution of session length across all

sessions. However, they did not illustrate what combination of these peers might

coexist in the system at any point of time. To address this issue, we turn our attention

to how long the peers currently in the system have been present (their uptime).

To compute the uptime distribution, we slightly alter the methodology described

in Section 7.3.3 to avoid bias towards short-lived peers as follows. Again, we divide

each measurement window of length τ into two halves, A and B. For peers in B,

we can either compute their uptime or we know that their uptime is at least τ
2
. For

Gnutella and Kad, for each snapshot in B, we observe the uptime for each peer. For

BitTorrent, where we have tracker logs instead of snapshots, we observe the uptime

of each peer per once per minute during B. We then examine the distributions of all

observed uptimes.

Figure 7.6 shows the CCDF of the uptime for co-existing peers within a snapshot

and reveals several interesting points. First, the uptime distribution exhibits very

similar behavior across different systems, except for the Debian dataset. The uptime

distribution in that dataset is heavily influenced by a large number of long-lived “seed”

peers run by the Debian organization. Second, a significant fraction of peers have

an uptime longer than half our measurement period (shown by a gap between the

rightmost data-point and the x-axis). More specifically, roughly 10%–20% of peers

per snapshot in Gnutella and Kad have an uptime longer than one day, and around

1–3% of BitTorrent peers have an uptime longer than two weeks for the Red Hat and

Debian traces. Third, and most importantly, these distributions are heavily weighted

towards uptimes longer than a couple of hours, i.e., they show that the majority of

peers in each snapshot are long-lived peers. For example, if we randomly select a peer

from these systems, the probability that the selected peer has been up for more than

five hours is roughly 40% in Gnutella, 55% in Kad, and 60% in BitTorrent for the

Linux ISO images. This effect is significantly less pronounced, but still present, in

the FlatOut trace, where 15% of active peers have been up for more than five hours.
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The combination of the uptime distribution (Figure 7.6) and the session length

distribution (Figure 7.4) present an enlightening view of churn in P2P systems as

follows: At any point of time, a majority of participating peers in the system are

long-lived peers. However, the remaining small portion of short-lived peers join and

leave the system at such a high rate that they constitute a relatively large portion of

sessions. Describing this from a different angle, the session length of a randomly

selected session (Figure 7.4) is likely to be short whereas the uptime of a randomly

selected active peer from the system (Figure 7.6) is likely to be long.

7.4.5 Uptime Predictability

One interesting question is whether a peer’s uptime is a good predictor of its

remaining uptime. Although Figure 7.4 suggests this is the case, to empirically explore

this property we examine the correlation between uptime and remaining uptime at

two levels. Figure 7.7 depicts the CCDF of the median4 remaining uptime as a

function of a peer’s current uptime. It shows that while uptime is in general a good

predictor of remaining uptime, its strength is different across systems and for different

uptime values. More specifically, peer uptime in Gnutella is a good indicator of

remaining uptime regardless of uptime value; the median peer has a remaining uptime

between 50% and 100% of its uptime so far. However, the uptime of Kad peers is

a stronger predictor of remaining uptime up to around 4 hours. Beyond that, the

median peer’s remaining uptime increases only slowly. Nevertheless, at x = 16 h, Kad

peers have approximately the same remaining uptime as their Gnutella counterparts.

In the BitTorrent datasets, we see a rapid increase in the median remaining uptime

as the uptime approaches one hour, but peers up for at least two hours all have

approximately the same remaining uptime. The FlatOut trace appears to wobble,

which is likely noise given the relatively small number of sessions in this dataset.

While Figure 7.7 presents the median remaining uptime, we would also like to

understand the variance of this predictor. If the variance is low, that would make the

4Since we cannot measure the length of very long sessions as discussed in Section 7.3.3, we cannot
compute the mean. However, we do know how many of these sessions there are and can thus find
the median.
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predictor more useful. To explore this, Figure 7.8 shows the CCDF of the remaining

uptime for peers currently up for 1 hour, 2 hours, and 8 hours, from one trace of each

system. The CCDFs show that the reliability of the predictions is highly variable,

covering a broad range of times. For example, in Gnutella around 50% of peers up

for 8 hours will be up for at least another 8 hours. However, the bottom 20% of the

peers will be up for less than 2 more hours, while the top 30% will be up for more

than 16 hours! In summary, our results show that while uptime is on average a good

indicator of remaining uptime, it exhibits high variance. Therefore it should only be

used when a bad prediction does not have a major cost but making better choices on

average improves overall performance.

7.5 Peer-Level Characterization

In this section, we characterize the behavior of a peer across multiple appearances.

These characterizations are useful for both the design and evaluation of peer-to-peer

systems. For example, in the previous section we showed that the current uptime of

a peer is a rough predictor for the remaining uptime. A peer that has just arrived

cannot use this fact to make much of a prediction. Examining multiple appearances

can reveal whether previous session lengths are good predictors of future session

lengths. We examine the following characteristics: (i) the distribution of downtime,

(ii) the correlation between consecutive session lengths, and (iii) the correlation of

availability on consecutive days.

As described in Section 7.3.7, Kad is the only one of our systems in which indi-

vidual peers have a persistent unique identifier. Thus, our characterizations of Kad

reflect the behavior of individual users, while our characterizations of Gnutella and

BitTorrent reflect the behavior of IP address. Both types of characterization are use-

ful. The behavior of users is important when persistent state is stored across sessions

(such as the list of filenames that a user shares), while the behavior of IP addresses

is important when we want to know if any peer will be available at the address (such

as when an incoming peer bootstraps).
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7.5.1 Distribution of Downtime

We define downtime as the interval between the moment a peer departs and its

next arrival. To ensure an unbiased selection of downtime measurements, we again

apply the window-halving methodology described in Section 7.3.3. The possibility in

Gnutella and Kad that the crawler misses some peers, described in Section 7.3.4, has

the opposite effect on downtime observations. Rather than increasing the number

of long events, it may significantly increase the number of short events. Figure 7.9

presents the distribution of downtime for Kad (based on ID) as well as Gnutella and

BitTorrent (based on IP address) and Table 7.3 lists the number of observations from

each dataset. The gaps between the rightmost data-point and the x-axis represent

the fraction of downtime events which were too long to measure without bias as well

as instances where the peer never returns (i.e., infinite downtime). One interesting

feature of these figures is that the behavior is approximately the same in Gnutella

and Kad, despite one of the measurements being based on ID while the other is based

on IP.

These CCDFs reveal a number of interesting qualities. First, the behavior in

BitTorrent is significantly different. In Gnutella and Kad, most departing peers return

within 1 day (70–85% in Gnutella and 90% in Kad), while in BitTorrent most peers

do not appear to return at all. Second, in Gnutella and Kad peers that will return

have a strong tendency to return sooner rather than later. For example, departed

peers return within 1 hour 40–70% of the time in Gnutella and 65–80% of the time

in Kad. In BitTorrent, a departed peer is somewhat more likely to reappear within

a few minutes, but after that has a relatively equal probability of returning at any

point between 10 minutes and 1 week, if it returns at all.5 This difference between

systems is likely due to their different modes of use. In Gnutella and Kad, users make

regular use of the overlay to discover and download new files. Users join a BitTorrent

overlay, on the other hand, to download one particular file. While they may depart

prematurely and complete a download later, once they have downloaded the file they

5Guo et al. [66] character the downtime of peers in BitTorrent (which they call the “sleeping
time”) as exponential. However, this conclusion may be an artifact caused by incorrectly handling
long-sessions as described in Section 7.3.3.
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have little motivation to return. In summary, our results show that in a content-

distribution system, departed peers are unlikely to return. However, those that return

are equally likely to return at any time. In contrast, most peers in file-sharing systems

do return, and there is a strong tendency to return sooner rather than later.

7.5.2 Correlation in Session Length

Another interesting question is “How correlated are session lengths across different

appearances of a single peer?” Characterizing such an effect illustrates whether past

session lengths of a peer are a good predictor of its future session lengths. For example,

in Gnutella, a peer can promote itself to an Ultrapeer earlier if it can reliably estimate

that its remaining uptime is likely long. We explore this correlation across consecutive

sessions as follows. For a peer p that appears np times during our measurements,

there are (np − 1) pairs of consecutive sessions with session lengths (sp,i, sp,i+1) for

i ∈ [1, np −1]. Given the set of all pairs, across all peers, with a first session of length

x, Figure 7.10 presents the median4 second session’s length. These figures show that

there is a strong correlation between consecutive session lengths in Kad (based on

ID) and in Gnutella (based on IP address). However, session lengths in BitTorrent

do not exhibit a clear correlation. This result is not surprising because the pattern of

participation in BitTorrent is likely to be different from Kad or Gnutella. In summary,

past session length of a peer is a good predictor of its next session length in both

structured and unstructured file-sharing applications, but not in content-distribution

systems such as BitTorrent.

7.5.3 Correlation in Availability

The availability of a peer is the fraction of time the peer is available in the system,

which is a coarse measure of the peer’s overall participation regardless of its pattern of

appearance. For example, a node with 50% availability during one day, might appear

just once for 12 hours, or appear 4 times and stay 3 hours during each appearance.

In this section we examine correlations in the availability of peers, from one day to

another.
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To study peer availability, we divide each two-day dataset into two windows of

one-day length and examine the correlation between the availability of peers over

these two consecutive days. For the longer BitTorrent datasets, we use each pair

of consecutive days. Figure 7.11 depicts the median availability in the second day

as a function of the availability on the first day. These results show that a strong

correlation exists for availability in Gnutella and Kad. However, BitTorrent does not

exhibit such a clear correlation, except for one case: if a peer is up for a full 24 hours,

it is likely to be up for the next full 24 hours as well.

One interesting question is: “How many appearances per day does a peer make?”

Figure 7.12 presents the distribution of the number of appearances per day. It shows

that more than half the peers in both systems appear only once per day while a very

small number of clients may return to the system very often (up to 60 times per day).

Bhagwan et al. [61] show the availability of different peers are mostly independent.

Their results are complimentary to ours, since we examine the correlation in avail-

ability of a single peer across multiple measurement windows while they looked for

correlations across multiple peers in the same measurement window. In summary,

the availability of individual peers across two consecutive days are strongly correlated.

Furthermore, most observed peers appear only once per day.

7.6 Design Implications

In this section, we discuss a couple of key implications of our findings on the

design of P2P applications. To gracefully cope with churn, P2P systems must be

able to efficiently handle the significant fraction of peers who join the system for

just a few minutes. In particular, churn could significantly affect the connectivity

of P2P overlays. To improve resiliency against churn, each peer should prefer to

maintain routing information about other stable long-lived peers. This approach

implies that long-lived peers maintain state about each other and provide a backbone

of connectivity among peers. For example, peers in a DHT should select long-lived

peers as neighbors to ensure better connectivity and resiliency against churn (e.g.,

[24, 69]).



139

Gnut 5
Gnut 4
Gnut 3
Gnut 2
Gnut 1

Availability Day 1 (%)

A
va

ila
b
ili

ty
D

ay
2

(%
)

100806040200

100

80

60

40

20

0

(a) Gnutella (based on IP address)

Kad 4
Kad 3
Kad 2
Kad 1

Availability Day 1 (%)

A
va

ila
b
ili

ty
D

ay
2

(%
)

100806040200

100

80

60

40

20

0

(b) Kad (based on node ID)

BT FlatOut
BT Debian

BT Red Hat

Availability Day 1 (%)

A
va

ila
b
ili

ty
D

ay
2

(%
)

100806040200

100

80

60

40

20

0

(c) BitTorrent (based on IP address)
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Our results suggest two reliable strategies for identifying long-lived peers as fol-

lows: (i) randomly selecting a set of peers that are all active at the same time is likely

to capture long-lived peers since the distribution of uptime among peers up at any

given moment (Figure 7.6) is weighted more heavily towards long-lived peers, or (ii)

observed peers must be weighted by the number of times they are observed. The key

point is that observations made over time become skewed towards the larger number

of short-lived peers if the observations are not weighted back in favor of the long-lived

peers.

Our results motivate a scalable and low cost bootstrapping mechanism that does

not require a central bootstrapping node. In particular, we showed that 20%–30%

of peers at any moment have an uptime longer than one day. This implies that

each peer can select and cache IP addresses of several long-lived peers using one of

the strategies we describe above. To connect to the system at any later time, each

peer can contact cached long-lived peers to locate a participating peer in the system.

Maintaining a sufficiently large cache of long-lived peers ensures that each peer can

always successfully bootstrap to the system without the need to contact a well-known,

centralized address. In contrast, selecting cached peers based on a first-in first-out

strategy, as currently implemented by many Gnutella clients, tends to generate a list

of short-lived peers that are unlikely to be available.

Finally, the strong correlation in the length of consecutive sessions and availability

implies that a P2P application can roughly estimate the duration of its session length

(or availability per day) based on its last observed behavior. The advantage of this

approach is that it does not require the application to wait in order to predict that

the user may have a long session.

7.7 Summary

This paper took a major step towards increasing our understanding of churn by

characterizing different aspects of peer dynamics in three different classes of P2P

systems: Gnutella, Kad and BitTorrent. We identified an array of measurement

pitfalls in characterizing churn, such as biased peer selection and false negatives, and
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either addressed them or bound their resulting error. Our main findings, listed in

introduction of this Chapter, present new insight into peer dynamics which can be

used in the design and evaluation of churn-aware P2P applications. In particular, we

found that the session length distribution is neither Poisson nor Pareto and is more

accurately modeled by a Weibull distribution. Good models for these distributions

are required for making accurate evaluations of proposed P2P protocols, via either

simulation or analysis.
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CHAPTER 8

Static Connectivity Properties

For structured overlays (DHTs), the graph properties are rigidly controlled by

the protocol and therefore do not require an empirical study to derive useful models

about their static connectivity. Unstructured overlays, on the other hand, use ad-

hoc overlay construction mechanisms leading to graphs with properties that cannot

be easily derived from examining the protocol description. Characterizing the graph

properties of unstructured overlays is fundamental to understanding the behavior of

existing systems and necessary for the evaluation of new protocols intended to run

over existing unstructured overlays (e.g., [112, 113, 114]).

To perform these characterizations, this chapters presents a case study of the

Gnutella network, using global snapshots captured by Cruiser. The following graph

properties are included: (i) degree distribution, (ii) shortest path length distribution,

(iii) clustering coefficient, and (iv) resiliency (as defined in [60]).

A handful of prior studies have previously examined graph properties of the Gnu-

tella network [6, 7, 8, 9, 115]. One common characteristic shown in most of these

studies is a power-law degree distribution. Another common observation is that Gnu-

tella exhibits “small world” properties [40]: short path lengths and a large clustering

coefficient. One early study [60] examined the resiliency of a subgraph of the Gnu-

tella overlay. They found the overlay was resilient to random peer removals, but

fragmented quickly when removing highest-degree peers first. However, these studies

examined the Gnutella network in its infancy when it contained only tens of thousands
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of peers, at most, and did not have a two-tier architecture. Additionally, they did

not explore the accuracy of their captured snapshots as we did in Chapter 4. This

chapter explores each of these properties using substantially larger, more accurate

snapshots.

This work focuses on developing an accurate understanding of the topological

properties and dynamics of large-scale unstructured P2P networks. Such an under-

standing is crucial for the development of P2P networks with superior features in-

cluding better search, availability, reliability and robustness capabilities. For instance,

the design and simulation-based evaluation of new search and replication techniques

has received much attention in recent years [99, 116, 117, 118]. These studies often

make certain assumptions about topological characteristics of P2P networks (e.g.,

a power-law degree distribution) and usually ignore the dynamic aspects of overlay

topologies. However, little is known today about the topological characteristics of

popular P2P file sharing applications. An important factor to note is that proper-

ties of unstructured overlay topologies cannot be easily derived from the neighbor

selection mechanisms due to implementation heterogeneity and dynamic peer partici-

pation. Without a solid understanding of the topological characteristics of file-sharing

applications, the actual performance of proposed search and replication techniques in

practice is unknown and cannot be meaningfully simulated.

The key findings of this study of static connectivity properties include the follow-

ing:

• In contrast to earlier studies [6, 7, 9], we find that node degree does not exhibit

a power-law distribution. We show how power-law degree distributions can be

a result of measurement artifacts.

• While the Gnutella network has dramatically grown and changed in many ways,

it still exhibits the clustering and the short path lengths of a small world net-

work.

• The overlay topology is highly resilient to random peer departure and even

systematic removal of high-degree peers.

This chapter is based on material under submission to a journal, which includes

material previously presented at conferences [11, 12]. The material was co-authored
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with Prof. Reza Rejaie and Dr. Subhabrata Sen. The experimental work is entirely

mine. The writing is primarily mine, with contributions by Prof. Reza Rejaie and Dr.

Subhabrata Sen, who also provided technical guidance.

8.1 Methodology

The data presented in this Chapter were collected using Cruiser, which is described

in Chapter 4. We examine four snapshots for illustrative purposes to demonstrate

graph properties of the overlay topology. We have examined many other snapshots

and observed similar trends and behaviors. Therefore, we believe the presented results

are representative. Presenting different angles of the same subset of snapshots allows

us to conduct cross comparisons and also relate various findings. Table 8.1 presents

the basic properties of the four snapshots we will examine in this chapter. Our follow-

up study [17] examines how these properties have changed over time. In Chapter 9,

we will hundreds of back-to-back snapshots to examine how the overlay topology

evolves with time.

Once information is collected from all reachable peers, we perform some post-

processing to remove any obvious inconsistencies that might have been introduced

due to changes in the topology during the crawling period. Specifically, we include

edges even if they are only reported by one peer, and treat a peer as an ultrapeer if

it neighbors with another ultrapeer or has any leaves. Due to the inconsistencies, we

might over-count edges by about 1% and ultrapeers by about 0.5%.

Crawl Date Total Nodes Leaves Top-level Unreachable Top-Level Edges

09/27/04 725,120 614,912 110,208 35,796 1,212,772

10/11/04 779,535 662,568 116,967 41,192 1,244,219

10/18/04 806,948 686,719 120,229 36,035 1,331,745

02/02/05 1,031,471 873,130 158,345 39,283 1,964,121

TABLE 8.1: Sample crawl statistics
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8.2 Overlay Composition

The two-tier overlay topology in modern Gnutella (as well as other unstructured

P2P networks) consists of ultrapeers that form a “spaghetti-like” top-level overlay

and a large group of leaf peers that are connected to the top-level through multiple

ultrapeers. We treat individual snapshots of the overlay as graphs and apply different

forms of graph analysis to examine their properties. We pay special attention to the

top-level overlay since it is the core component of the topology. Throughout our

analysis, we compare our findings with similar results reported in previous studies.

However, it is important to note that we are unable to conclusively determine whether

the reported differences (or similarities) are due to changes in the Gnutella network

or due to inaccuracy in the captured snapshots of previous studies.

Implementation Heterogeneity: The open nature of the Gnutella protocol has

led to several interoperable implementations. It is important to determine the distri-

bution of different implementations (and configurations) among participating peers

since the implementation design choices directly affect the overall properties of the

overlay topology. This will help us explain some of the observed properties of the

overlay. Table 8.2 presents the distribution of different implementations across dis-

covered ultrapeers. This table shows that a clear majority of contacted ultrapeers

use the LimeWire implementation. We also discovered that a majority of LimeWire

ultrapeers (around 94%) use the most recent version of the software available at the

time of the crawl. These results reveal that while heterogeneity exists, nearly all

Gnutella users run LimeWire or BearShare.

We are particularly interested in the number of connections that are used by each

implementation since this design choice directly affects the degree distribution of the

overall topology. For LimeWire, this information can readily be obtained from the

source code. However, not all implementations are open, and users can always change

Implementation: LimeWire BearShare Other

Percentage: 74%–77% 19%–20% 4%–6%

TABLE 8.2: Distribution of implementations
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the source code of open implementations. Thus, we must still collect this information

from running ultrapeers in action.

Our measurements reveal that LimeWire’s and BearShare’s ultrapeer implemen-

tations prefer to serve 30 and 45 leaves, respectively, whereas both try to maintain

around 30 neighbors in the top-level overlay.

8.3 Node Degree Distributions

The introduction of the two-tier architecture in the overlay topology along with

the distinction between ultrapeers and leaf peers in the modern Gnutella protocol

demands a close examination of the different degree distributions among different

group of peers.

Node Degree in the Top-Level Overlay: Previous studies report that the dis-

tribution of node degree in the Gnutella network exhibited a power-law distribution

[6, 7, 8] and later changed to a two-segment power-law distribution [6, 9]. To verify

this property for the modern Gnutella network, Figure 8.1 depicts the distribution of

node degree in log-log scale among all peers in the top-level overlay for the 10/18/04
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FIGURE 8.1: Observed top-level degree distributions of a slow and a fast crawl
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snapshot (labeled “Fast Crawl”). This distribution has a spike around 30 and does

not follow a power-law, which would exhibit a line-like tail when plotted in log-log

scale. A key question is to what extent this difference in degree distribution is due to

the change in the overlay structure versus error in captured snapshots by earlier stud-

ies. To examine this question, we captured a distorted snapshot by a slow crawler,1

which is similar to the 50-connection crawler used in an earlier study [6]. The depicted

degree distribution based on this distorted snapshot in log-log scale is similar to the

distribution previously reported in [6, Fig. 6], which they describe as multi-modal dis-

tribution with a power-law tail. To properly compare these snapshots with different

sizes, the y-axis in Figure 8.1 is normalized by the number of peers in the snapshot.

To a slow crawler, peers with long uptimes appear as high degree because many short-

lived peers report them as neighbors. However, this is a mischaracterization since

these short-lived peers are not all present at the same time. More importantly, this

finding demonstrates that using distorted snapshots that are captured by slow crawlers

can easily lead to incorrect characterizations of P2P overlays.

Figure 8.2a presents the degree distribution of top-level peers for the four snap-

shots presented in Table 8.1, in linear scale. Because we were unable to contact

every top-level peer, the distribution in Figure 8.2a is biased slightly low since it does

not include all edges.2 To address this problem, we split the data into Figures 8.2b

and 8.2c, which depict the neighbor degree distribution for reachable and unreach-

able peers, respectively. The data in Figure 8.2b is unbiased since it includes data

only from peers we contacted successfully, i.e., we discovered every edge connected

to these peers. The spike around a degree of 30 is more pronounced in this figure.

Figure 8.2c presents the observed degree distribution for unreachable top-level peers

(i.e., overloaded or NATed). This distribution is biased low since we cannot observe

the connections between pairs of these peers. In this data, a much greater fraction of

1To reduce the crawling speed, we simply limited the degree of concurrency (i.e., number of
parallel connections) to 60 in Cruiser.

2The degree distribution for all the presented results is limited to 50, which includes all but a
small percentage (< 1%) of peers with larger degree that are discussed later.



149

02/02/05
10/18/04
10/11/04
09/27/04

Top-Level Neighbors

w
it
h

x
N

ei
g
h
b
or

s
T
o
p
-L

ev
el

P
ee

rs

50403020100

10000

8000

6000

4000

2000

0

(a) Top-level Degree Distribution

02/02/05
10/18/04
10/11/04
09/27/04

Top-Level Neighbors

P
ee

rs
w

it
h

x
N

ei
g
h
b
or

s
R
ea

ch
ab

le
T
o
p
-L

ev
el

50403020100

10000

8000

6000

4000

2000

0

(b) Reachable Degree Distribution

02/02/05
10/18/04
10/11/04
09/27/04

Top-Level Neighbors

P
ee

rs
w

it
h

x
N

ei
g
h
b
or

s
U

n
re

ac
h
ab

le
s

T
o
p
-L

ev
el

50403020100

10000

8000

6000

4000

2000

0

(c) Unreachable Degree Distribution
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peers have an observed degree below 30. Many of these peers probably have a true

degree closer to 30, with the true distribution likely similar to that in Figure 8.2b.

The degree distribution among contacted top-level peers has two distinct segments

with a spike in degree around 30, resulting from LimeWire and BearShare’s behavior

of attempting to maintain 30 neighbors. The few peers with higher degree represent

other implementations that try to maintain a higher node degree or the rare user who

has modified their client software. The peers with lower degree are peers which have

not yet established 30 connections. In other words, the observed degree for these

peers is temporary. They are in a state of flux, working on opening more connections

to increase their degree. To verify this hypothesis, we plot the mean degree of peers

as a function of their uptime in Figure 8.3, which shows uptime and degree are

correlated. The standard deviation for these measurements is quite large (around

7–13), indicating high variability. When peers first arrive, they quickly establish

several connections. However, since node churn is high, they are constantly losing

connections and establishing new ones. As time passes, long-lived peers gradually

accumulate stable connections to other long-lived peers. We further explore this issue

in Chapter 9 when we examine overlay dynamics.
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Node Degree For Leaves: To characterize properties of the two-tier topology, we

have examined the degree distribution between the top-level overlay and leaves, and

vice versa. Figure 8.4a presents the degree distribution of connections from ultrapeers

to leaf peers. A distinct spike at 30 is visible, with a secondary spike at 45. The

first two spikes are due to the corresponding parameters used in the LimeWire and

BearShare implementations, respectively. This figure shows that a significant minority

of ultrapeers are connected to less than 30 leaf peers, which indicates availability in

the system to accommodate more leaf peers.

In Figure 8.4b, we present the degree of connectivity for leaf peers. This result

reveals that most leaf peers connect to three ultrapeers or fewer (the behavior of

LimeWire), and a small fraction of leaves connect to several ultrapeers. A few leaves

(< 0.02%, not shown) connect to an extremely large number of ultrapeers (100–3000).

Implications of High Degree Peers: In all degree distributions in this subsection,

we observed a few outlier peers with an unusually high degree of connectivity. The

main incentive for increasing degree is to reduce their mean distance to other peers.

To quantify the benefit of this strategy, Figure 8.4c presents the mean distance to

other peers as a function of node degree, averaged across peers with the same degree.

We show this for both the top-level overlay and across all peers. This figure shows

that the mean path to participating peers exponentially decreases with degree. In

other words, there are steeply diminishing returns for increasing degree as a way of

decreasing distance to other peers.

Turning our attention to the effects of high-degree peers on the overlay, for scoped

flood-based querying, the traffic these nodes must handle is proportional to their

degree for leaves and proportional to the square of their degree for ultrapeers. Note

that high-degree ultrapeers may not be able, or may not choose, to route all of

the traffic between their neighbors. Thus, they may not actually provide as much

connectivity as they appear to, affecting the performance of the overlay.

During our analysis, we discovered around 20 ultrapeers (all on the same /24 sub-

net) with an extremely high degree (between 2500 to 3500). These high-degree peers

are widely visible throughout the overlay, and thus receive a significant portion of ex-

changed queries among other peers. We directly connected to these high degree peers
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and found they do not actually forward any traffic.3 We removed these inactive high

degree peers from our snapshots when considering path lengths since their presence

would artificially improve the apparent connectivity of the overlay.

8.4 Reachability

The degree distribution suggests the overlay topology might have a low diameter,

given the moderately high degree of most peers. To explore the distances between

peers in more detail, we examine two equally important properties of overlay topolo-

gies that express the reachability of queries throughout the overlay: (i) the reacha-

bility of flood-based queries, and (ii) the pairwise distance between arbitrary pairs of

peers.

Reachability of Flood-Based Query: Figure 8.5a depicts the mean number of

newly visited peers and its cumulative value as a function of TTL, averaged across

top-level peers in a single snapshot. The shape of this figure is similar to the result

that was reported by Lv et al. [9, Figure 3] which was captured in October 2000, with

a significantly smaller number of peers (less than 5000). Both results indicate that

the number of newly visited peers exponentially grows with increasing TTL up to a

certain threshold and has diminishing returns afterwards. This illustrates that the

dramatic growth of network size has been effectively balanced by the introduction

of ultrapeers and an increase in node degree. Thus, while the network has changed

in many ways, the percentage (but not absolute number) of newly reached peers per

TTL has remained relatively stable. Figure 8.5a also shows the number of newly

visited peers predicted by the Dynamic Querying formula (assuming a node degree of

30), which we presented in Chapter 2.1 (pg. 8). This result indicates that the formula

closely predicts the number of newly visited peers for TTL values less than 5. Beyond

5, the query has almost completely saturated the network.

3To our surprise, it appears that these peers monitor exchanged messages among other participat-
ing peers. They could be trying to locate copyright infringement among Gnutella users or collecting
ratings information to measure which songs consumers might like to buy.
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Figures 8.5b and 8.5c shows a different angle of reachability for the same snapshot

by presenting the Cumulative Distribution Function (CDF) of the number of visited

peers from top-level peers for different TTL values. This figure shows the distribution

of reachability for flood-based queries among participating peers. Figure 8.5c uses a

logarithmic x-scale to magnify the left part of the figure for lower TTL values. The

figure illustrates two interesting points: First, the total number of visited peers using

a TTL of n is almost always an order of magnitude higher compared to using a TTL

of (n − 1). In other words, TTL is the primary determinant of the mean number

of newly visited peers independent of a peer’s location in the overlay. Second, the

distribution of newly visited peers for each TTL is not uniform among all peers.

As TTL increases, this distribution becomes more skewed, a direct effect of node

degree. More specifically, if a peer or one of its neighbors has a very high degree, its

flood-based query reaches a proportionally larger number of peers.

Pair-wise Distance: Figure 8.6a shows the distribution of shortest-path lengths in

terms of overlay hops among all pairs of top-level peers from four snapshots. Ripeanu

et al. [6] presented a similar distribution for the shortest-path length based on snap-

shots that were collected between November 2000 and June 2001 with 30,000 peers.

Comparing these results reveals two differences: (i) the pairwise path between peers

over the modern Gnutella topology is more homogeneous in length, with shorter mean

value compared with a few years ago. More specifically, the old snapshots show 40%

and 50% of all paths have a length of 4 and 5 hops whereas our results show 60% of

all paths having a length of 4. (ii) the results from our snapshots are nearly identical

with one another; whereas in [6], there is considerable variance from one crawl to

another. In summary, the path lengths have become shorter, more homogeneous, and

their distribution is more stable.

Effect of Two-Tier Topology: To examine the effect of the two-tier overlay topol-

ogy on path length, we also plot the path lengths between all peers (including leaves)

in 8.6b. If each leaf had only one ultrapeer, the distribution of path length between

leaves would look just like the top-level path lengths (Figure 8.6a), but right-shifted

by two. However, since each leaf peer has multiple parents, the path length distri-

bution between leaves (and thus for all peers) has a more subtle relationship with
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Figure 8.6a. Comparing Figures 8.6a and 8.6b shows us the cost introduced by using

a two-tier overlay. In the top-level, most paths are of length 4. Among leaves, we see

that around 50% of paths are of length 5 and the other 50% are of length 6. Thus,

getting to and from the top-level overlay introduces an increase of 1 to 2 overlay hops.

Eccentricity: The longest observed path in these four snapshots was 12 hops, how-

ever the vast majority (99.5%) of paths have a length of 5 hops or less. To further

explore the longest paths in the topology, we examined the distribution of eccentricity

in the top-level overlay. The eccentricity of a peer is the distance from that peer to

the most distant other peer. More formally, given the function P (i, j) that returns the

shortest path distance between nodes i and j, the eccentricity, Ei of node i is defined

as follows: Ei = max(P (i, j), ∀j). Figure 8.6c shows the distribution of eccentricity

in four topology snapshots. This figure shows that the distribution of eccentricity

is rather homogeneous and low which is an indication that the overlay graph is a

relatively balanced and well-connected mesh, rather than a chain of multiple groups

of peers.

8.5 Small World

Recent studies have shown that many biological and man-made graphs (e.g., col-

laborations among actors, the electrical grid, and the WWW graph) exhibit “small

world” properties. A study by Jovanovic et al. [115] in November–December 2000

concluded that the Gnutella network exhibits small world properties as well. Our

goal is to verify to what extent recent top-level topologies of the Gnutella network

still exhibit small world properties despite growth in overlay population, an increase in

node degree, and changes in overlay structure. As we described in Chapter 2 (pg. 15),

in these graphs the mean pairwise distance between nodes (Lactual) is small while the

clustering coefficient (Cactual) is high compared to random graphs (Lrandom, Crandom)

with the same number of vertices and edges, i.e., Lactual and Lrandom are close, but

Cactual is orders of magnitude larger than Crandom.

Table 8.3 presents these properties for modern Gnutella. Because computing the

true mean path lengths (Lrandom) is computationally expensive for large graphs, we
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Graph Lactual Lrandom Cactual Crandom

New Gnutella 4.17–4.23 3.75 0.018 0.00038

Old Gnutella 3.30–4.42 3.66 0.02 0.002

Movie Actors 3.65 2.99 0.79 0.00027

Power Grid 18.7 12.4 0.08 0.005

C. Elegans 2.65 2.25 0.28 0.05

TABLE 8.3: Small world characteristics

used the mean of 500 sample paths selected uniformly at random. We also include

the information presented by Jovanovic et al. [115] and three classic small world

graphs [40]. All three classic small world graphs in the table exhibit variants of these

conditions. Snapshots of modern Gnutella satisfy these conditions which means that

modern Gnutella still exhibits small world properties.

Comparing the clustering coefficient between modern Gnutella and old Gnutella

shows that modern Gnutella has less clustering. A plausible explanation is the in-

creased size, which provides the opportunity for more diverse connectivity to other

peers. A high clustering coefficient implies a larger fraction of redundant messages

in flood-based querying. The observed clustering could be a result of factors like

peer bootstrapping, the peer discovery mechanism, and overlay dynamics. Further

analysis is needed to better understand the underlying causes. Chapter 9 shows how

peer churn is one factor that contributes to clustering.

8.6 Resilience

We also examine the resilience in different snapshots of the Gnutella overlay topol-

ogy using two different types of node removal: (i) random removal and (ii) removing

the highest-degree nodes first. An early study [60] conducted the same analysis on

Gnutella based on a partial topology snapshot, finding that the overlay is resilient

to random departures, but under highest-first node removal quickly becomes very

fragmented (after removing just 4% of nodes).



159

Figure 8.7 depicts the percentage of remaining nodes in the topology in the largest

component (y-axis) as a function of the percentage of nodes removed (x-axis), in both

the random and highest-first node removal. This figure shows the Gnutella overlay

is not only extremely robust to random peer removals but also exhibits high resilience

to highest-first node removal. Even after removing 85% of peers randomly, 90% of

the remaining nodes are still connected. For the highest-first case, after removing the

50% of peers with the highest-degree, 75% of the remaining nodes remain connected.

There are two possible factors contributing to this difference with earlier results [60]:

(i) the higher median node degree of most nodes in modern Gnutella, and (ii) a non-

negligible number of missing nodes and edges in the partial snapshot of the earlier

study. Our result implies that complex overlay construction algorithms (e.g., [119])

are not a necessary prerequisite for ensuring resilience in unstructured overlays.

8.7 Summary

Using Gnutella, this chapter presents the first detailed characterization of an un-

structured two-tier overlay topology that is typical of modern popular P2P systems,

based on accurate and complete snapshots captured with Cruiser. We characterized
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FIGURE 8.7: Fraction of remaining nodes in the largest connected component as a function of

the percentage of original nodes removed for the 9/27, 10/11, and 10/18 snapshots. The top (over-

lapped) lines and the bottom three lines present random and pathological node removal scenarios,

respectively.
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the graph-related properties of individual snapshots, demonstrating the following key

points:

• The degree distribution is not power-law as previously believed. Rather, most

ultrapeers have close to 30 neighbors, while a significant minority have fewer

neighbors.

• Shortest-path lengths are still short.

• Gnutella exhibits the high clustering coefficient of a small world.

• Gnutella is resilient to node removals, even when targeting highest-degree nodes

first.

This chapter developed essential insights into the behavior of overlay topologies

which are necessary to improve the design and evaluation of peer-to-peer file-sharing

applications. We have made the snapshots presented in this chapter available online4

for use by other researchers in trace-driven simulations. To date, they have been

downloaded more than 80 times.

4http://mirage.cs.uoregon.edu/P2P/root-snapshots.html

http://mirage.cs.uoregon.edu/P2P/root-snapshots.html
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CHAPTER 9

Dynamic Connectivity Properties

Portions c© 2006 IEEE. Reprinted, with permission, from D. Stutzbach

and R. Rejaie, “Improving lookup performance over a widely-deployed

DHT,” in Proc. IEEE INFOCOM, Barcelona, Spain, Apr. 2006.

The peer dynamics discussed in the previous chapter have secondary effects. The

way that peers arrive and depart induces certain characteristics on the overlay graph.

This chapter examines these effects empirically and through simulation. Our main

finding is that peer dynamics lead implicitly to the emergence of a stable core of

connected, long-lived peers.

Another aspect of dynamic connectivity is the way searches propagate over the

overlay. We present the first empirical study of search performance in a Distributed

Hash Table, finding that performance is actually better than predicted theoretically

in prior work.

9.1 Stable Core

In Chapter 8, we characterized the graph-related properties of individual snap-

shots of the overlay topology. However, in practice the overlay topology is inherently

dynamic since the peer population is constantly changing. These dynamics can sig-
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nificantly affect the main functionality of the overlay which is to provide connectivity

and efficiently route messages (e.g., queries, responses) among participating peers.

Characterizing overlay dynamics enables us to examine their impact on performance

of P2P applications. For example, a query or response message can be routed dif-

ferently or even dropped as a result of changes in the edges of the overlay. To our

knowledge, aggregate dynamics of unstructured P2P overlay have not been studied

and thus these dynamics can not be incorporated in meaningful simulation-based

evaluations of P2P protocols.

There are two basic causes for dynamics in the overlay topology as follows:

• Dynamics of Neighbor Selection: Two existing peers in the overlay may establish

a new (or tear down an existing) connection between them. Such a change in

edges is not triggered by users and thus protocol-driven.

• Dynamics of Peer Participation: When a peer joins (or leaves) the network, it

establishes (or tears down) its connections to other participating peers in the

overlay. Therefore, these changes in overlay edges are user-driven.1

Note that the user-driven dynamics of peer participation are likely to exhibit

similar distributions in different P2P applications [19, 106]. Therefore, identifying

the effect of user-driven dynamics on one overlay provides useful insights for the

design and evaluation of other unstructured P2P overlays.

To characterize the dynamics of the Gnutella network, we investigate (i) whether

a subset of participating peers form a relatively stable core for the overlay, (ii) what

properties (such as size, diameter, degree of connectivity, and clustering) this sta-

ble core exhibits, and (iii) what underlying factors contribute to the formation and

properties of such a stable core

The material in this section is adapted from material under submission to a jour-

nal, which includes material previously presented at conferences [11, 12]. The material

was co-authored material with Prof. Reza Rejaie and Dr. Subhabrata Sen. The ex-

1Note that most P2P applications do not run as a daemon. Therefore, peer arrival/departure is
a moderately reliable indication of user action. We are mindful that dynamic IP addresses could
force some peers to leave and rejoin the network with a new address. Nevertheless, we group such
changes as user-driven since they are beyond the control of the P2P protocol.
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perimental work is entirely mine. The writing is primarily mine, with contributions

by Prof. Reza Rejaie and Dr. Subhabrata Sen, who also provided technical guidance.

Methodology: By definition, if the overlay has a stable core, it must be composed

of the long-lived ultrapeers. Short-lived peers are not stable, and leaf peers are not

part of the core since they do not provide connectivity. Therefore, to identify the

stable core of the overlay at any point of time, we select the subset of top-level peers

who have been part of the overlay for at least τ minutes, i.e., whose uptime is longer

than a threshold τ . We call this subset of peers the stable peers, or SP (τ), and only

focus on this subset in our analysis. By changing τ , we can control the minimum

uptime of selected peers and thus the relative stability and size of SP (τ).

To conduct this analysis, we use several slices of our dataset where each slice

represents a period of 48 hours of continuous back-to-back snapshots of the overlay

topology, with hundreds of snapshots per slice. We treat the last captured snapshot

over each 48 hour period as a reference snapshot. Any peer in the reference snapshot

must have joined the overlay either before or during our measurement period. By

looking back through the snapshots, we can determine (with accuracy of a few min-

utes) the arrival time of all peers that joined during the measurement period. For

those peers that were present for the entire measurement period, we can conclude

that their uptime is at least 48 hours. Having this information, we can annotate

all peers in the reference snapshot with their uptime information. Figure 9.1a de-

picts the CCDF of uptime among existing peers in the reference snapshot for several

slices (Figure 9.1b presents the initial part of the same graph). In essence, this figure

presents the distribution of uptime among participating peers in steady state, im-

plying that the size of SP (τ) exponentially decreases with τ . This behavior is more

visible over longer time scales. Furthermore, this also implies that the total number

of possible connections within SP (τ) dramatically decreases with τ . These findings

are consistent with our study of peer churn in Chapter 7.

External Connectivity to/from the Stable Core: To quantify the connectivity

between SP (τ) and the rest of the overlay, we examined whether peers within SP (τ)

have a higher tendency to connect to each other rather than peers outside the core.

To quantify any potential tendency, we generate a control graph by randomizing the
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FIGURE 9.1: Number of stable peers and their external connectivity for differentτ
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connections between peers. That is, given a snapshot, G(V, E), we randomly generate

a graph G′(V, R) using the same set of peers (V ) such that the degree of each peer is

unchanged, i.e., (|Rij ∀ j| = |Eij ∀ j|) ∀ i. The randomized version gives us a control

for the number of edges internal to SP (τ) that arise purely as a result of the degree

distribution of the graph. We can then compare the number of edges internal to

SP (τ) in the snapshot with the number in the randomized version as follows:

|Eij ∀ i, j ∈ SP | − |Rij ∀ i, j ∈ SP |

|Rij ∀ i, j ∈ SP |

This captures the percentage increase in internal edges compared to the expected

value, and is plotted as a function of τ in Figure 9.2. The figure demonstrates that

the longer a peer remains in the network, the more biased its connectivity becomes

towards peers with the same or higher uptime. The characteristics of internal and

external connectivities for SP (τ) imply that the longer a peer remains in the overlay,

the more likely it establishes connections to peers with equal or higher uptimes, i.e.,

the more biased its connectivity becomes toward peers with higher uptime. Since

connections for all participating peers exhibit the same behavior, connectivity of the

overlay exhibits a biased “onion-like” layering where peers with similar uptime (a
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FIGURE 9.2: Percentage of increased clustering among stable nodes, relative to a randomized

topology for 5 different snapshots
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layer) have a tendency to be connected to peers with the same or higher uptime

(internal layers of the onion). Since the size of SP (τ) decreases with τ , this means

that internal layers are both smaller and more clustered.

Internal Connectivity Within the Stable Core: To study different angles of

connectivity among ultrapeers within SP (τ), we focus only on the connections of the

overlay where both end points are inside SP (τ), i.e., we remove all edges to peers

outside SP (τ). We call this the stable core overlay or SC(τ). The first question is:

how much connectivity is there between the peers in SC(τ)? Figure 9.3a depicts the

percentage of ultrapeers within SC(τ) that are in the largest connected component,

as a function of τ . This figure demonstrates that while the fraction of connected peers

slightly decreases with τ over long time scales, a significant majority (86%–94%) of

peers within SC(τ) remain connected in one large component. The minor drop in

the percentage of connected peers is due to the exponential decrease in number of

peers within SC(τ), which in turn reduces the number of edges among peers, and

thus affects the opportunity for pairwise connectivity.

The second question is: how clustered and dense is the connected portion of the

core overlay? Figure 9.3b shows the diameter and characteristic (mean) path length

among fully connected peers in the largest component of the stable core overlay.

Interestingly, both the mean path length and the diameter of the stable core overlay

remain relatively stable as τ increases, despite the dramatic drop in number of edges.

Furthermore, the mean path length for the stable core overlay, even when it has a very

small population (only 10% of top-level peers for τ=45h), is around 5 hops, very close

to the mean path length for the entire top-level overlay (4.17–4.23 from Table 8.3).

Finally, Figure 9.3c depicts the evolution of the clustering coefficient for the stable

core overlay as τ increases, along with the clustering coefficient for the entire top-level

overlay in the reference snapshot. This figure shows two important points: (i) peers

within the stable core overlay are more clustered together than the entire top-level

overlay on average, and, more importantly, (ii) connectivity among peers within the

stable core overlay becomes increasingly more clustered with τ .

Implications of Stable and Layered Core Overlay: The onion-like connectivity

of the unstructured overlay implies that all peers within the core do not depend on
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peers outside the core for reachability. In other words, the core overlay provides a

stable and efficient backbone for the entire top-level overlay that ensures connectivity

among all participating peers despite the high rate of dynamics among peers outside

the core.

9.1.1 Examining Underlying Causes

A key question is: how does this onion-like layered connectivity form? To address

this issue, we quantify the contribution of user-driven and protocol-driven changes

to the edges of the overlay. We can distinguish protocol-driven versus user-driven

changes in edges between two snapshots of the overlay as follows: if at least one of

the endpoints for a changing edge has arrived (or departed) between two snapshots,

that change is user-driven. Otherwise, a changing edge is protocol-driven. To an-

swer the above question, we examine a 48-hour slice of back-to-back snapshots from

10/14/2004 to 10/16/2004, using the first snapshot as a reference. Given a slice, we

can detect new or missing edges in any snapshot compared to the reference snap-

shot. Let δp− and δu− (δp+ and δu+) denote the percentage of missing (and new)

edges in a snapshot due to protocol-driven (p) and user-driven (u) causes, relative to

the reference snapshot. Note that δp and δu are by definition cumulative since the

reference snapshot does not change. Figure 9.4a and 9.4b depict δ−=δp−+δu− and

δ+=δp++δu+. The top graph (δ−) shows that around 20% and 30% of edges in the

overlay are removed due to protocol-driven and user-driven factors during the first

100 minutes, respectively. After this period, almost all removed edges are due to de-

parting peers (i.e., user-driven). Similarly, from the bottom graph (δ+), many edges

are added during the first 100 minutes due to both protocol-driven factors and the

arrival of new peers. After this period, almost all new edges involve a newly arriving

peer (i.e., user-driven).

These results show two important points: First, each peer may establish and tear

down many connections to other peers during the initial 100 minutes of its uptime.

But peers with higher uptime (i.e., peers inside SC(τ) for τ ≥ 100 min) maintain

their connections to their remaining long-lived neighbors, and only add (or drop)
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connections to arriving (or departing) peers. This behavior appears to explain the

formation of the biased onion-like layering in connectivity within the overlay. Second,

user-driven dynamics are the dominant factor in long-term changes of the overlay.

Since dynamics of peer participations exhibit rather characteristics in different P2P

systems [19], other Gnutella-like overlays are likely to show similar behavior. We plan

to conduct further investigations to better understand the underlying dynamics that

contribute to this behavior.

9.2 Query Properties

The behavior of queries is the second aspect of the connectivity properties of

peer-to-peer overlays examined in this dissertation. The topics will not be covered

exhaustively, however the most common query techniques will be examined. As struc-

tured overlays use a more complex query mechanism, they will be examined in greater

detail.

Unstructured Overlays: For unstructured overlays, the basic search operation is

flooding within the scope of a certain time-to-live (TTL). The searcher sends out a

message to each of its neighbors, who relay it to each of their neighbors, etc. The

search ends when it is TTL hops from its origin. Modern Gnutella clients used a more

advanced mechanism called Dynamic Querying [21], which uses flooding as its basic

underlying mechanism.

To understand flooding behavior, we must examine the number of peers reached as

a function of TTL, as a distribution over all possible starting peers. As another angle,

we can examine the distribution of path-lengths between pairs of peers. This topic

was covered in Chapter 8 (pg. 153), while examining other connectivity properties of

the Gnutella network.

Structured Overlays: In structured overlays (DHTs), each peer has an overlay

address and a routing table. When a peer performs a query for an identifier, the

query is routed to the peer with the closest overlay address. To guarantee good

query performance (typically O(log |V |) hops), every DHT scheme enforces rules for
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how peers select neighbors. However, these performance bounds have only been

proven in the case when peers do not arrive and depart. To show robustness to peer

dynamics, researchers have been limited to simulations and small-scale experiments,

which may not accurately model real-world peer dynamics. In addition to affecting

query performance, peer dynamics can also result in inconsistent routing tables so

that the same query may lead to different peers, depending on where in the overlay

the query originates.

For these reasons, a study that examines the query performance over a widely-

deployed DHT is necessary to examine the scalability and performance of DHTs in

the real world.

There are two classes of solutions to cope with the effects of churn on DHTs:

(i) DHT-based: DHTs can incorporate various techniques to actively improve their

resiliency to churn by increasing the degree of redundancy or the frequency of updates

for the routing table at each peer; (ii) Client-based: Alternatively, a client operating

over an inaccurate DHT can improve its lookup efficiency by conducting lookups in

parallel and cope with lookup inconsistencies by active replication of content.

Previous studies have examined both DHT-based [5, 27] and client-based [24, 69]

solutions as well as the interactions and trade-offs between them [29]. All of the

previous studies have used either simulation, analysis, or small-scale experiments

to study these issues. However, the characteristics of real-world user dynamics are

not well understood, making it unclear how well simulation-based analysis of DHTs

represents real-world behavior. Section 9.2.7 discusses the related work in more detail.

This section presents a measurement-based characterization of routing table in-

accuracy and its impact on lookup performance in a widely-deployed DHT, namely

Kad . Kad is an open, Kademlia-based [24] DHT with more than 1 million concurrent

users that has been recently deployed by the popular eMule2 file-sharing application

to improve efficiency of search in the face of a growing user population. Section 9.2.1

presents an overview of Kademlia and Kad.

2eMule began as an open-source alternative for the eDonkey unstructured network.
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In Section 9.2.2, we begin our study by comparing the theoretically predicted

performance with empirical measurements. Surprisingly, performance is better in

practice, suggesting oversights in the theory. In Section 9.2.3, we establish an analyt-

ical framework to quantify the effect of routing table richness on lookup performance

and show that Kademlia’s k-buckets improve lookup performance. In Section 9.2.4,

we gather additional empirical data about Kad’s routing tables and demonstrate that

observed performance is in agreement with our new theoretical predictions.

In Section 9.2.5, we examine two classes of parallel lookup techniques to improve

lookup efficiency over Kad. Toward this end we developed a new tool called kLookup,

which emulates a lookup from any source peer to any destination ID without re-

quiring local access to the designated peers for these IDs. Furthermore, leveraging

the iterative lookup scheme in Kad, kLookup enables us to empirically examine dif-

ferent parallel lookup techniques and identify major design trade-offs. Finally, in

Section 9.2.6 we characterize the frequency of inconsistent lookup results in Kad. We

then explore how the degree of replication improves lookup consistency.

Our main contributions can be summarized as follows:

• Analytical Framework: We develop an analytical framework for computing

the average performance of lookups for prefix-matching DHTs. This leads to the

result that redundancy in routing tables, such as Kademlia’s k-buckets, directly

improves mean lookup performance by reducing hop count

• New Tools: (i) kFetch, a tool for extracting the routing table from Kad peers,

(ii) kLookup, a parameterized tool for performing lookups over Kad using a

variety of lookup algorithms

• Empirical Findings: (i) Validating the predictions of our analytical frame-

work, (ii) Locating the sweet spot for the degree of lookup parallelism to im-

prove lookup efficiency, (iii) Locating the sweet spot for the degree of replication

to overcome routing table inconsistencies

While this study is centered around Kad, our analysis, methodologies, tools and

findings are applicable to many other DHTs with minor adjustments. To address the

wider applicability of our work, we briefly discuss how some issues can be pursued in
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the context of other DHTs. Our extensive examination of eMule’s source code also

revealed several bugs [120, 121, 122], some of which were fixed in the next revision.

The material in this section is adapted from material under submission to a jour-

nal, which includes material previously presented at a conference [14]. The material

was co-authored material with Prof. Reza Rejaie. The experimental work, analysis,

and writing are entirely mine. Reza Rejaie provided technical guidance and editorial

assistance.

9.2.1 Background

We first present some background on Kademlia, since it forms the basis for the Kad

network that we use for our empirical study. Like most DHTs, peers in Kademlia each

have an identifier that is assigned either uniformly at random or via a cryptographic

hash. To determine the distance between two peers, Kademlia uses a unique “XOR

metric”, the bitwise XOR of their identifiers. For example, the distance between 0100

and 0111 is 0011 (or 3).

The XOR metric places Kademlia in the general class of prefix-matching DHTs,

such as Pastry [26] and Tapestry [123]. At the high-level, prefix-matching DHTs all

work in the same way. A lookup for a target identifier must locate the peer with

the longest matching prefix (measured in bits). We can view the distance between

two identifiers as the index of the highest-order mismatched bit. For example, 0100

and 0000 have a distance of 3, because the third bit is the highest-order mismatched

bit. A lookup consists of a sequence of lookup steps (or hops). Each step must lead

to a peer with a longer matching prefix in order to guarantee forward progress. A

lookup terminates when no further forward progress can be made. For a network of n

peers, most peers will be around log2 n bits apart, and the expected number of steps

to perform a lookup is log2 n, assuming one bit of improvement per step. If we can

guarantee b bits of improvement at each step, then each lookup requires log2 n

b
steps.

We call b the symbol size, and in basic Kademlia b = 1. Section 9.2.3 examines the

impact of different choices for b on lookup latency (in hops) and route table size.



174

As IP is also a prefix-matching protocol, we borrow some terminology from IP to

describe Kademlia routing tables. Each route in a Kademlia routing table is labeled

with a subnet address and mask. When performing a lookup for a key, the most-

specific routing table entry with a matching subnet is used, just as in IP routing. In

this paper, the familiar “slash-notation” specifies the number of bits in the mask (i.e.,

“/3” means an ID must match the highest-order 3 bits of the subnet address). In

Kademlia, the routing table is structured to contain one route per address bit, with

increasingly specific masks. The subnet addresses are the same as the ID of the peer

hosting the routing table. This structure is sufficient to guarantee forward progress.

The routing table structure can be viewed as a binary tree, as shown in Figure 9.5a

(pg. 181). For example, consider a Kademlia network using 4-bit identifiers3 and a

particular peer with the address 0000. There are route table entries for the following

address–mask pairs: 0000/0, 0000/1, 0000/2, 0000/3, 0000/4. Because more-specific

routes are always preferred, the routing table entries are effectively for the following

address–mask pairs: 1000/1, 0100/2, 0010/3, 0001/4, 0000/4. In other words, the

0000/0 line will only contain 1000/1 addresses since any 0000/1 address would map

to one of the more specific entries.

The routing tables in all the Kademlia peers collectively form one large binary tree,

with each peer containing a fraction (O( log n
n

)) of it. During a lookup, each routing

step pivots to a different peer which is one bit closer to the target, guaranteeing that

the lookup requires at most O(log n) steps.

For redundancy purposes, each routing table entry (or node in the binary tree)

contains a list, called a k-bucket, of k matching contacts. Each contact includes the

Kademlia ID, IP address, and port of the remote peer. Thus, each lookup step has

a choice of k different contacts for the next step. Section 9.2.3 examines some of

the consequences for choosing different values of k. We note that k-buckets could be

adapted for use in other types of DHT as well.

Kademlia makes use of parallel routing to speed up lookups, as do EpiChord [124]

and Accordion [69]. Issuing α lookup requests at a time avoids long waits while

3In practice no DHT would use such a small identifier space, but it’s more tractable for illustrative
purposes.
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departed peers time out and also increase the probability of finding low-latency peers.

Section 9.2.5 examines using different values of α in Kad.

Kademlia uses iterative routing, where the client is responsible for the entire

lookup process. At each step, the client sends a lookup request to the next-hop

peer and waits for a lookup reply . The reply lets the client know what the next hop

is. Iterative routing contrasts with recursive routing, where the lookup request is

forwarded automatically from one peer to another. While it has been shown that

recursive routing typically has lower latency [125], iterative routing has several useful

practical properties:

Fate-Sharing: Lookup messages cannot be lost due to the depar-

ture of an intermediate peer holding the lookup re-

quest [126].

Debugging: Iterative routing is easier to debug since information

at each step is reported back to the client performing

the lookup.

Compartmentalization: Iterative routing decouples route table maintenance

and lookup technique, allowing them to be stud-

ied and improved independently in a deployed net-

work. Our tool, kLookup, uses this division to eval-

uate a variety of lookup techniques directly over the

existing Kad network, as shown in Sections 9.2.5

and 9.2.6.

Route Table Extraction: Iterative routing allows us to download the entire

routing table of any peer. We make use of this fea-

ture in our tool, kFetch, described in Section 9.2.2.3.

In summary, the key properties of Kademlia (and thus Kad) are as follows: (i)

routing by prefix-matching, (ii) redundancy in routing tables (k-buckets), (iii) par-

allel routing, and (iv) iterative routing. Redundancy, parallel routing, and iterative

routing could be incorporated into most varieties of DHT. For example, EpiChord is
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a variant of Chord with parallel routing. Prefix-matching is an intrinsic property of

Kademlia’s design, which it shares with a number of other DHTs such as Pastry and

Tapestry.

Kad is a Kademlia-based DHT network for file-sharing, composed primarily of

eMule clients. While Kad is based on Kademlia, Kad uses a slightly different routing

table structure, described in detail in Section 9.2.3. Kad has approximately 1 million

simultaneous users, plus many more firewalled peers who utilize the Kad DHT for

lookups but do not participate in the DHT structure. For each file an eMule client

shares, the client computes the hash of each word in the filename and publishes

information about itself and the file to the peers responsible for the hashes. When an

eMule user enters a keyword search, eMule computes the hash of the first keyword

and initiates a lookup for the hash. The lookup returns a set of endpoints to which

the client submits the full keyword list. Those peers process the query and return a

set of matching results.

9.2.2 Theory versus Practice

One of the purposes of our work is to compare how well DHTs work in practice

with theoretical expectations. The theoretical analysis in the Kademlia paper predicts

an expected lookup cost of log2 n

b
hops [24]. In practice, some routing table entries will

be out of date or missing, delaying forward progress and increasing the lookup cost.

The open question is: How much worse is practice than theory?

To answer this question, we must first compute the theoretical performance for

Kad by finding b and n. We can obtain the value of b (the symbol size) through

source code inspection. The value of n (the population size) we measure empirically,

as described below. Once we compute the theoretical performance, we empirically

measure the performance in practice and compare.

9.2.2.1 Estimating Network Size

Our first step is to estimate the size of the Kad network (n). An obvious approach

would be to crawl the Kad network to capture a snapshot of the entire population of
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peers. However, accurately capturing the entire Kad network is challenging. Because

peers arrive and depart while the crawler runs, any snapshot will result in an inflated

population count as it will record a large number of short-lived peers that are not

simultaneously present. The magnitude of this error grows with the length of the

crawl. Due to Kad’s large size, and the large size of individual routing tables, rapidly

capturing a snapshot of the whole network is impractical. However, a crawler can

take a snapshot of a subnet quickly (i.e., with little error). Since Kad identifiers

are selected uniformly at random, any subset of the ID space (such as a subnet) is

a representative sample of the total population. Multiplying the measured size of a

subnet by the number of such subnets yields an estimate of the population size. By

taking the mean over many such samples, we can get a good estimate for n.

In Chapter 4, we developed a parallel peer-to-peer overlay crawler, called Cruiser.

Given a Kad overlay subnet as an input (e.g., 0x5cd/12), Cruiser walks the DHT

structure to capture a snapshot of all the active peers with IDs in the specified

subnet. For example, it can capture a /10 subnet with roughly 1000 peers in around

3–4 minutes and a /12 subnet with roughly 250 peers in around one minute. During

June of 2005, we captured the population size for several hundred randomly selected

subnets with Cruiser. Our measurements reveal that the Kad network had a mean

population size of approximately 980,000 concurrent peers at that time.

9.2.2.2 Performance in Theory

Close examination of the eMule 0.46a source code reveals that Kad is based on

Kademlia uses a 4-bit symbol for the first hop and 3.25-bit symbols for each additional

hop. The 1
4

bit is due to the fact that Kad uses unbalanced subtrees. We also validated

our understanding of the source code with empirical observations of its operation.

Using n = 980, 000, we can now compute the lookup cost in Kad:

lookup cost in Kad: 1 +
log2 n − 4

3.25
= 5.89 hops.

Now that we have found the theoretical performance, we move on to measuring the

performance in practice.
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9.2.2.3 Performance in Practice

To examine performance in practice, we need to measure the number of hops per

lookup from peers to destination IDs. While we could instrument a single peer and

search for random destinations, we would prefer to examine the lookup cost from

different peers. Towards this end, we develop two new tools: kLookup and kFetch.

kLookup: To examine different lookup strategies, we developed a new tool, called

kLookup, which emulates a lookup from any source peer to any destination ID without

requiring local access to the source peer. To emulate a lookup from a random source

peer, kLookup takes the following steps. First, it uses a local Kad routing table to

locate the peer closest to a randomly generated ID (i.e., the source peer), then it

extracts the routing table of the source peer using kFetch. Finally, it performs a

lookup to the destination ID using the extracted routing table of the source peer.

We validated kLookup by comparing tcpdump traces of kLookup and eMule lookup

using the same destination ID.

kFetch: To download the routing table needed for kLookup, we developed a new

tool called kFetch. The routing table of the target peer must be downloaded quickly

in order to minimize any error due to ongoing churn (i.e., the routing table changes

in real time). There are two challenges to downloading a routing table efficiently: (i)

the rate of requests (which are UDP messages) must be properly paced to rapidly

download the table without causing excessive network congestion, and (ii) lookup

messages must request the right IDs to extract a peer’s routing table with the min-

imum number of messages. kFetch implements congestion control using a variant of

the SACK TCP algorithms to determine the proper rate for issuing requests. kFetch

computes the routing table structure of the target peer according to Kad’s rules for

populating them and generates a query for each k-bucket the peer may have. This

strategy could be used to extract the routing table in any DHT that uses iterative

routing. In addition, kFetch examines the returned data to determine when a branch

of the tree is empty, and will not issue queries for provably empty subtrees.
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Measured Performance: Using kLookup, we collected measurements from hun-

dreds of randomly selected (source peer, destination ID) pairs, finding a mean lookup

cost of 3.2 hops per lookup. Surprisingly, the performance in practice (3.2 hops)

is significantly better than the performance predicted by theory (5.9 hops)! As we

expect the theoretical expectation to be a lower-bound on lookup cost, this result

suggests there is something wrong with the theory. In the next section, we examine

the theory more closely and revise it to account for the effects of k-buckets. Using

the revised theory, we return to comparing performance in theory with performance

in practice in Section 9.2.4.

9.2.3 Analysis of Kademlia’s k-Buckets

In this section, we first establish an analytical framework to examine the effect on

lookup performance of adding extra contacts to routing tables. We derive a formula

for computing the typical number of hops needed to perform a lookup as a function

of the quantity and structure of the extra contacts, and use the formula to explore

trade-offs between different methods for increasing the richness of routing tables.

Every DHT has some structure that determines a peer’s potential neighbors based

on identifiers. For example, in basic Kademlia a peer must have a neighbor with a

different high-order ID bit, a neighbor with a matching first bit and a different second

bit, a neighbor with the first two bits matching and a different third bit, etc. We call

each address–mask pair a bucket (following the Kademlia terminology) where each

bucket contains address information, called contacts, for several neighbors. A bucket

with k contacts is called a k-bucket. In the base case, a DHT only contains enough

information to perform the lookup in log2 n steps. In prefix-matching DHTs such

Kademlia, this implies a symbol size of b = 1 and one contact per bucket. In general,

the expected number of steps required to perform a lookup is given as follows:

steps per lookup =
log2 n

bits improved per step
(9.1)

A DHT can enrich the routing table structure beyond this base case by either 1)

adding more buckets or 2) adding more contacts per bucket. By adding more buckets,
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a DHT can guarantee that a larger number of bits will be improved at each step,

thereby decreasing the number of hops for a lookup. For example, Pastry [26] uses a

default symbol size of b = 4 which guarantees 4 bits will be improved at each step.

Tables in Chord can also be enriched in this way [29].

Adding more contacts per bucket is used to guard against churn, an approach

employed by DHTs such as Kademlia [24] and Tapestry [123]. By having other

contacts handy, a peer can more quickly repair its routing table when a failure is

detected. Furthermore, as observed in [24], with heavy-tailed session times, storing

backups and only evicting unresponsive peers implicitly leads to a set of peers with

good uptime characteristics. Finally, multiple contacts per route allow for the use of

parallel routing.

To examine the benefits and costs of the above two approaches for enriching

routing tables, we analyze their impact in the context of Kademlia. Our analysis also

directly applies to other prefix-matching systems such as Pastry and Tapestry, where

we can quantify the improvement at each step in terms of the number of matching

bits. For other DHTs that use a different basic geometry, our analysis could be

adapted by modifying the formulas to reflect the appropriate distance metric.

There are two different approaches for adding more buckets to a routing table,

both of which improve the number of lookup hops from log2 n to log2n

b
:

• Discrete Symbols: With this approach, illustrated in Figure 9.5b, each interior

node points to 2b − 1 buckets and an additional interior node. When searching

a routing table, a peer begins by checking the first b bits. If all of them match

the peer’s ID, then it proceeds to the next b bits (i.e., the next interior node).

Otherwise, it proceeds immediately to the appropriate bucket. Using Discrete

Symbols increases the routing table size from log2 n rows of one k-bucket each

to log2n
b

rows of 2b − 1 k-buckets each. This is the approach used in Kademlia

and Pastry.

• Split Symbols : With this approach, illustrated in Figure 9.5c, each interior node

points to 2b−1 buckets and an additional interior node. When searching a routing

table, a peer begins by checking the first single bit. If it matches the peer’s ID,
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then it proceeds to the next bit (i.e., the next interior node). Otherwise, it

examines the next b bits and proceeds to the appropriate bucket. Using Split

Symbols increases the routing table size from log2 n rows of one k-bucket each

to log2 n rows of 2b−1 k-buckets each. This is the approach used in Kad.

To compare and contrast these approaches for organizing routing table contacts,

we create a general framework for analyzing the performance of both Discrete Symbols

and Split Symbols. A system in the framework is uniquely characterized by three

properties:

Symbol size (b): the number of bits leading to a leaf node (i.e., a bucket)

Resolution (r): the number of bits leading to an interior node

Bucket size (k): the number of contacts per bucket

We define D(b, r, k) as a system which uses b-bit symbols with r-bit resolution and k-

buckets. D(1, 1, k) is the basic Kademlia approach, D(b, b, k) is the Discrete Symbol

approach, and D(b, 1, k) is the Split Symbol approach used in Kad. Each routing

table has log2n
r

rows of 2b−2b−r k-buckets, for a total size of k(2b−2b−r) log2n
r

contacts.

Normalizing by a factor of log2 n yields a normalized size of k 2b−2b−r

r
.

Most prior work on DHTs4 is concerned exclusively with the case where the se-

lected contact will not match any additional bits of the target identifier. For example,

consider searching for the key 111 in the routing table of peer 000 with the base b = 1

system. The peer looks in the bucket with the prefix 1, and returns a contact which

we know matches the first bit of the key. However, that contact could be any of the

peers 100, 101, 110, or 111. In other words, there’s a 1
2

chance of improving at least

1 extra bit, a 1
4

chance of improving at least 2 extra bits, and so on. More precisely,

the probability of improving at least δ bits is:

Pr[X ≥ δ] =
1

2δ
(9.2)

Due to these random improvements, the average-case is better than that given

in prior work. In particular, the key insight is that large buckets (k > 1) improve

4To our knowledge, the only work on DHTs which has considered the impact of random improve-
ments is Chord [82].
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the probability of randomly finding a contact with more matching bits since there

are more options to choose from. As we will show, the average number of improved

bits increases logarithmically with k, making the performance boost of increasing k

comparable to the performance boost of increasing b. Random improvements only

help if we advance by another interior node; that is, we can only randomly improve

in multiples of r bits. Generally, for a k-bucket the probability of improving by at

least δ extra r-bit symbols is:

F (δ, r, k) = Pr[X ≥ δ] = 1 −
(
1 −

1

2rδ

)k

(9.3)

and the probability of improving by exactly δ extra r-bit symbols is:

f(δ, r, k) = Pr[X = δ] = F (δ, r, k) − F (δ + 1, r, k) (9.4)

The key question is: how many additional bits improve on average due to ran-

domness? Since we know the probability of improving exactly δ additional symbols

(f(δ, r, k)), we can compute the average number of extra bits improved by finding the

average value of δ and multiplying by the number of bits per symbol (r) as follows:

extra bits improved per step: m(r, k) = r
∞∑

δ=0

δ · f(δ, r, k) (9.5)

total bits improved per step: t(b, r, k) = b + m(r, k) (9.6)

Note that m(r, k) is actually decreasing in r due to the r term in Formula 9.3.

While we were unable to find a simple closed form for m(r, k), it can be computed

numerically without difficulty. With 1-bit resolution (r = 1), m(1, k) there are asymp-

totically log2 k + 0.3327 extra bits of improvement, somewhat exceeding this value

for lower k. Significantly, for the base case D(1, 1, 1) of no additional routing table

entries, m(1, 1) = 1 indicating one extra bit improves per step. In other words, a basic

D(1, 1, 1) system on average performs a lookup in half as many hops as reported by

previous work.

For a Discrete Symbol configuration, D(b, b, k), the number of bits improved on

average is b + m(b, k). For a Split Symbol configuration, D(b, 1, k), the number of
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bits improved on average is b + m(1, k). While the Split Symbol approach does use

more routing table space for the same values of b and k, it has the advantage that

it can leverage a random improvement of a single extra bit. The Discrete Symbol

approach must randomly improve by b extra bits at a time to make use of random

improvements.

To compare the different approaches, we first consider the three extreme cases:

D(1, 1, k) (pure Redundancy), D(b, b, 1) (pure Discrete Symbols), and D(b, 1, 1) (pure

Split Symbols). Figure 9.6a presents the performance of each approach as a function

of the normalized routing table size. Split Symbols and Redundancy have nearly

identical performance, while Discrete Symbols performs slightly better. For the case

of Split Symbols (D(b, 1, 1)), the b-bit symbols guarantee an improvement of b bits in

the worst case, plus an additional m(1, 1) = 1 bits on average, for a total of exactly

b + 1 bits

For the case of Discrete Symbols (D(b, b, 1)), the b-bit symbols again guarantee an

improvement of b bits in the worst case, plus an additional m(r, 1) bits on average.

However, m(r, 1) asymptotically approaches 0 for large r. As a point of reference,

for Pastry’s typical value of b = r = 4, the average improvement is 4.27 bits per

step, roughly a 4% reduction in the mean number of lookup hops5 compared to that

reported by the Pastry paper [26].

For the case of large buckets and 1-bit symbols (D(1, 1, k)), there is one guaranteed

bit of improvement, plus an additional m(1, k) bits on average, for a total of 1 +

m(1, k). As a point of reference, for the value of k = 20 suggested in the Kademlia

paper [24], the average improvement is 5.7 bits per step rather than 1 bit per step,

resulting in a 60% reduction in the mean number of hops!

An important question is: Can performance be improved by using a mixture of

large buckets and large symbols? The short answer is “No”. Figures 9.6b and 9.6c

plot several other permutations of D(b, r, k). Figure 9.6b holds k constant and varies

b, while Figure 9.6c holds b constant and varies k. For small values of k (e.g., 2) with

varying b, both Discrete Symbols and Split Symbols have performance in between

5The expected number of hops is equal to log
2

n

B where B is the average number of bits of
improvement.



185

D(1, 1, k)
D(b, 1, 1)
D(b, b, 1)

Normalized Routing Table Size (contacts per log2 n)

A
ve

ra
g
e

b
it
s

im
pr

o
ve

d

2102826242220

14

12

10

8

6

4

2

(a) Comparison of pure Redundancy, pure Discrete Symbols, pure Split Symbols

D(b, 1, 20)
D(b, b, 20)
D(b, 1, 2)
D(b, b, 2)

Normalized Routing Table Size (contacts per log2 n)

A
ve

ra
g
e

b
it
s

im
pr

o
ve

d

2102826242220

13
12
11
10
9
8
7
6
5
4
3
2

(b) Comparison of approaches with constant k and varying b

D(4, 4, k)
D(2, 2, k)
D(4, 1, k)
D(2, 1, k)

Normalized Routing Table Size (contacts per log2 n)

A
ve

ra
g
e

b
it
s

im
pr

o
ve

d

2102826242220

12
11
10
9
8
7
6
5
4
3
2

(c) Comparison of approaches with varying k and constant b

FIGURE 9.6: Relative performance of different routing table structures



186

their regular performance and D(1, 1, k). For moderate values (e.g., 20) of k, the

performance of Split Symbols is virtually identical to D(1, 1, k), while the performance

of Discrete Symbols plummets (as seen in Figure 9.6b). Because Discrete Symbols

cannot make good use of randomness, the k-redundancy imposes a cost with little

benefit on lookup performance.

In summary, increasing the symbol size (b) offers a constant-factor improvement

to performance, while using k-buckets offers a comparable average-case improvement.

Moreover, k-buckets offer other advantages as follows:

• Reduced implementation complexity

• Lower maintenance bandwidth; fewer restrictions on acceptable contacts allows

for more contacts to be acquired passively

• Better resistance to churn by accumulating high-quality contacts

While our framework is motivated by our study of Kad, it applies to any prefix-

matching DHT and could be extended to other DHTs that can accommodate different

symbol or bucket sizes. In the following section, we use the formulas we have devel-

oped to compute a lower bound on the average lookup hops in Kad and empirically

examine how close our predicted model is to the actual performance.

9.2.4 Accuracy of Routing Tables in Kad

In the previous section, we demonstrate that theoretical predictions of lookup

performance cannot depend only on the network size (n) and symbol size (b), but

must also incorporate the resolution (r) and bucket size (k). In this section, we return

to comparing theory with practice, beginning with an exploration of the resolution

(r) and bucket size (k) in Kad. We begin by determining these values by source code

inspection6 and then empirically study the impact of churn on routing table accuracy.

6There is no written specification that describes the Kad protocol so our explanations are based
on our reading of the source code.
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9.2.4.1 Predicting Kad Performance

Close examination of the eMule 0.46a source code reveals that Kad is based on

Kademlia with a bucket size of 10 contacts (k = 10) and 3.25-bit Split Symbols,

meaning Kad is a D(3.25, 1, 10) system. The 1
4

bit is due to the fact that Kad uses

unbalanced subtrees. Each interior node has branches with labels 0, 1000, 1001, 101,

110, and 111. The 0 branch leads to the next interior node; the other branches

lead to k-buckets. The average improvement per step is 3.25 + m(1, k) bits. We also

validated our understanding of the source code with empirical observations of eMule’s

operation. According to Formula 9.6 the mean number of improved bits per step is

6.98 in Kad. As a special case, Kad’s root node has a full 16 branches, so it improves

at least the 4 most significant bits and 7.73 bits on average on the first step. To

account for this, we revise Formula 9.1 as follows:

steps per lookup in Kad: 1 +
log2 n − t(4, 1, 10)

t(3.25, 1, 10)
(9.7)

Thus, the expected number of hops in Kad is 1 + log2(n)−7.73
6.98

= 2.74. However, this

assumes that every bucket has a full set of 10 valid entries. In the next subsection,

we empirically examine the contents of buckets in Kad.

9.2.4.2 Characteristics of Kad Tables

Using kFetch, we retrieved the routing tables of approximately 80,000 randomly

selected Kad peers in June 2005 and examined two properties of their k-buckets: (i)

completeness describes how full a bucket is and (ii) freshness describes the number of

contacts in the routing table that are still active (i.e., do not point to departed peers).

To locate a peer at random, kFetch generates a random Kad identifier, then performs

a Kad lookup to locate the peer closest to that Kad identifier. kFetch identifies stale

entries in the routing table by actively probing (i.e., sending a lookup request to) each

contact in the routing table, concurrently with continuing to download the routing

table.

Figure 9.7a shows the mean number of contacts (“Known”) in each routing table

bucket as a function of the bucket’s subnet mask. It also shows what fraction of these
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contacts are fresh (i.e., the contact responded to our ping). The “Ideal” line indicates

the average number of contacts we would expect to be in each bucket if the routing

tables were perfectly up to date, i.e., min
(
10, n

2x

)
where x is the number of bits in

the address mask and n is the population size. All three curves (Ideal, Known, and

Fresh) decrease steeply as the mask length exceeds 16 bits, due to the limited number

of matching contacts in the system. For shorter masks, on average each bucket has

one or two empty slots and contains one stale contact. The mean number of empty

slots is slightly higher as the mask length increases.

In Figures 9.7b and 9.7c, we examine the number of fresh contacts in each bucket

normalized by the total number in each bucket and by the expected (ideal) number,

respectively. Figure 9.7b shows the mean number of fresh contacts as a fraction of the

number of contacts actually present. This shows that around 90% of entries are fresh

for masks up to length around 16, then the fraction of fresh entries decreases, i.e., the

number of stale entries increases. This undesirable increase in stale entries is because

the current implementation of eMule doesn’t ping peers in buckets which are not at

least 70% full. In fact, in Figure 9.7c, where we examine the number of contacts

relative to the ideal number, above /17 there are actually more stale contacts than

active peers anywhere in that subnet, causing the normalized value to exceed 100%!

Peers gradually accumulate stale contacts in buckets which are expunged too slowly.

As a consequence, virtually every lookup in Kad necessarily ends with timeouts to

stale peers even though the closest active peer has already been contacted! This is a

direct result of eMule’s policy of not expiring contacts in mostly-empty buckets. As

this routing table maintenance problem can trivially be corrected in the eMule code,

throughout this paper we emulate the correct behavior as follows. After a lookup

completes, we compute the latency as the time from the start of the lookup until

kLookup receives a packet from the closest responsive peer.

From Figure 9.7a, we see that on average there are 1.5 empty slots plus 1 stale

contact per bucket. We could plug k = 10 − 1.5 − 1 = 7.5 into our formula, but first

we must validate that most buckets are close to the average state. If the variance is

very high (e.g., if 85% of buckets had 10 entries and the other 15% were completely

empty), then using the average would introduce considerable error. Towards this
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end, Figures 9.8a and 9.8b present the CDF of the number of contacts and fresh

contacts across all observed buckets for masks /4, /8, and /12. They show that for

both completeness and freshness, nearly all buckets are close to the average value.

Therefore, we may use the average value for the purposes of our computations without

introducing considerable error.

Using an average of 1.5 empty slots plus 1 stale contact per bucket, we have an

effective bucket size of k = 7.5. This increases the expected hop count slightly from

2.7 to log2(n)−7.33
6.58

+ 1 = 2.91 hops, according to Formula 9.7. This is still significantly

better than the previously predicted value of 6.30 hops. Comparing with observed

performance in practice (3.2 hops), 2.91 hops is consistent with our expectation that

theory provides a lower bound for the performance in practice. Additionally, we see

that the performance in practice is only slightly worse than the performance in theory.

Note that we are unable to change the routing tables in the entire Kad network.

Therefore, we explore only client-based alternatives to improve lookup performance

in Kad and evaluate different techniques to improve the efficiency and consistency of

lookup in the following two sections.

9.2.5 Improving Lookup Efficiency

We turn our attention to client-based approaches to improve the performance of

iterative lookup over a DHT that has inaccurate routing tables. While incomplete

buckets will degrade performance as described in the previous section, stale contacts

can dramatically increase latency by causing timeouts to occur. Since the timeout

interval is typically set to at least a few round-trip times, it can easily exceed the

desired time for the entire lookup.

9.2.5.1 Parallel Lookup

To improve performance despite inaccurate routing tables, clients can perform

parallel lookup. While parallel lookup has traditionally been used exclusively with

iterative DHTs, Jinyang Li et al. [69] also present a technique for performing parallel

lookup on a recursive DHT.
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In a parallel lookup, a client simultaneously manages multiple lookup requests to

different peers and performs the lookup process based on the information obtained

from all requests, reducing the problem of hitting stale contacts, and improving lookup

performance at the cost of greater network overhead (i.e., a larger number of requests

per lookup). Parallel lookup has two other significant advantages. First, lookup

requests facilitate populating or passively updating the routing tables, which in turn

reduces the bandwidth requirement for explicit updates, as shown in [29]. Second,

during each step of the lookup process, parallelism increases the number of contacts

searched, increasing the probability of finding a contact closer to the target (i.e.,

with more matching bits) and thus decreasing the number of hops needed to reach

the target. We examine the following two classes of parallel lookup techniques:

1. Strict Parallel Lookup: In this approach, a client begins a lookup by sending

lookup requests to the α best known contacts. Similar to the window-based

congestion control in TCP, a client restricts the number of requests in-flight to

α. A new request is issued only when a pending request times out or a response

is received. The resulting overhead is limited to a factor of α. The downside of

the strict approach is that when a client sends a packet to a departed contact, it

must wait for a timeout to occur before giving up. In the meantime, the degree

of parallelism is effectively reduced by one. However, a timeout is typically set

to at least a few round-trip times which is on the order of the desired time

for the entire lookup. Thus, in the strict approach, α roughly determines the

number of timeout events a client can experience without incurring a significant

latency penalty. Kademlia uses this approach.

2. Loose Parallel Lookup: Parallel lookup can be performed in a looser fashion by

allowing more than α requests in flight. In this approach, a client can issue a

lookup request to a contact that is among the top α contacts as soon as such a

contact is identified, even if this lookup request increases the number of pending

requests beyond α. For example, if α = 3, the lookup begins by sending 3 lookup

requests. If the first response contains 3 better contacts (which is likely), 3 more

requests are sent immediately. While this approach appears to be significantly



193

more expensive than strict parallel lookup, it incurs only modest additional

overhead since later responses from the same step are less likely to contain

better contacts (i.e., each time a packet is sent, the bar has been raised). The

advantage of this looser approach is the ability to quickly abandon lookups that

are likely to time out. This approach is used by eMule.

9.2.5.2 Evaluating Parallel Lookup

We evaluated the performance of both types of parallel lookup techniques under

varying degrees of parallelism. Using kLookup, we captured several hundred lookups

for different values of α for both strict and loose parallelism. Each lookup used a

unique, randomly-selected source and a unique, randomly-selected destination. In

our evaluation, we examine three metrics:

• Hops: The number of hops from the source to the destination

• Latency: The time from the start of the lookup to when a response is received

by the final destination, which is a function of the number of hops and the time

spent waiting for responses and timeouts

• Messages Sent: The overhead used to perform the lookup

As we mentioned earlier, increasing α can reduce the number of lookup hops

by providing more opportunities to randomly improve extra bits. Figure 9.9 shows
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FIGURE 9.9: Effect of parallel lookup on hop count
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that the mean number of hops decreases slightly as α increases,7 providing empirical

support.

The key question is: how much latency is introduced to lookup by timing out due to

stale contacts? Figure 9.10a compares the latency of the two approaches for several

values of α. The first observation is that the latency for α = 1 is very high—close to 10

seconds. Using a value of α = 3 dramatically reduces the latency, with diminishing

returns for larger α. Second, Figure 9.10a reveals that the loose approach is just

barely quicker than the strict approach for constant α. The greatest advantage of

loose parallelism is that it is significantly less likely to get stuck waiting for timeouts

to occur. However, as we show in Section 9.2.3, few contacts in Kad are stale. This

explains why loose parallelism does not show much performance improvement for this

network.

To examine the communication overhead of parallel lookup, Figure 9.10b shows

the number of packets sent as a function of α for the two approaches. In both cases, the

overhead increases roughly linearly with α, with the loose approach generating roughly

twice as many messages as the strict approach. Given that for fixed α the performance

of strict and loose parallelism are quite similar, strict parallelism is the better choice

for the current Kad network. To directly compare the two, Figure 9.10c factors out

α by plotting the lookup hops as a function of the overhead. This figure shows

that asymptotically the performance of strict and loose parallelism are surprisingly

similar. A large number of messages represents the lower bound on lookup hops: no

amount of increased parallelism of any kind will significantly improve performance.

At the lowest overhead (in messages sent), the two perform the same since the two

approaches result in identical behavior for the special case α = 1. However, the

sweet-spot for strict parallelism (α = 3) is significantly better than the sweet-spot for

loose parallelism.

In summary, these observations show that strict parallelism with α = 3 is a

good choice for the current Kad network. Higher values of α and loose parallelism

substantially increase overhead without much change in performance.

7This figure is noisy due to the narrow y-axis range. The general downward trend is nevertheless
visible.
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Comparing with eMule: As part of creating kLookup, we also attempted to

exactly reimplement eMule 0.46a’s lookup algorithm. We validated this mode of

kLookup by extending tcpdump to decode Kad packets and performing lookups for

the same key using kLookup and eMule itself to verify their similarity. In the process

of implementing eMule’s lookup algorithm, we discovered a few bugs [120, 121, 122]

which significantly degrade its efficiency.8

As part of our study, we wanted to compare the performance of eMule’s current

lookup algorithm with and without the bugs, in the hope that it will be of use to

the eMule developers. Again, we examine performance in terms of hops and latency,

and overhead in terms of the number of messages. These experiments are based on

more than one-thousand experiments using kLookup from unique, randomly-selected

sources and destinations. With the bugs fixed, eMule’s lookup algorithm is α = 3

with loose parallelism.

Figure 9.11a presents a CDF of the number of hops to perform a lookup. With the

bugs present, the mean value is 3.59 hops per lookup. Without bugs, the cost of hops

drops to 3.08 hops per lookup. Figure 9.11b shows the latency of the two versions.

In both cases, there is a significant tail (not shown) out to around 70 seconds. We

see that the fixed version improves by around 1 second in most cases. The most

striking difference however is in the overhead, as shown in 9.11c. The fixed version

uses roughly half as many messages on average.

9.2.6 Improving Lookup Consistency

Ideally, each peer in a DHT is responsible for a certain part of the DHT identifier

space and lookups for any identifier should lead to the responsible peer. In practice,

peer churn causes two types of inaccuracies in routing tables:

1. Peers may not yet have pointers to a recently arrived peer.

2. Peers may have stale pointers to a recently departed peer.

8Our results are based on eMule version 0.46a, the most recent version available at the time of
our study. We have been corresponding with the eMule developer team regarding these discoveries,
and at least some of the reported bugs were corrected in 0.46b.
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When routing tables are incorrect, it is possible for some parts of the identifier

space to be unreachable for some peers. The extent of these problems is determined

by how frequently the DHT validates its pointers, known as route stabilization [82],

compared to the rate of churn in the system. One approach to minimize these prob-

lems is to increase the frequency of route stabilization. However, this significantly

increases the bandwidth required for route maintenance.

9.2.6.1 Content Replication

An alternative approach is to map each identifier to the set of the c closest peers

in the identifier space, rather than to only the single closest peer. The publishing

operation performs a regular lookup, then searches the surrounding area to find the

closest c peers. The search operation does the same, and as long as the two find

any peer in common the search will succeed. Kademlia [24] takes this approach as a

basic principle; however, it can be used in almost any DHT. For example, DHash [31]

implements this technique over Chord. The parameter c must be chosen based on

knowledge of the degree of routing table inaccuracy, to guarantee with high likelihood

that multiple lookups will be able to find peers in common.

The key question is: what is the right value of c to guarantee a certain level of

reliability p? In the following subsection, we use empirical techniques to answer this

question for Kad.

9.2.6.2 Evaluating Lookup Consistency

To explore lookup consistency, we extended kLookup to locate the c closest points

after its regular search has completed. To get an empirical measure for p, we use

kLookup to perform 50 lookups to the same key, each from a different and random

starting point in the Kad network. The first lookup emulates a publish operation

which returns a set of peers to publish on. The following lookups to the same key

emulate query operations, returning a set of peers in response to the actual query.

Computing the fraction of queries that successfully find one of the target peers yields

an empirical measure of the consistency, p, for that experiment. We perform the
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lookups as concurrently as possible to limit the effects of peer departure and arrival.

For these experiments, we used strict parallelism with α = 3. We conducted this

experiment 20 times for each value of c in the interval [1, 10] (i.e., 1000 lookups per

value of c: 20 experiments and 50 lookups per experiment).

We observed that for c = 1, the consistency is only 89%, meaning that 11% of the

time queries fail to find the same “closest” peer as a publisher. To explore how many

replicas are needed, Figure 9.12a plots reliability (p) as a function of the number of

copies (c). With three copies (c = 3), the reliability is over 99.9% across the twenty

50-lookup trials. For c = 2, the consistency is in between, at around 96%.

The above values are for finding any of the replicas. However, another issue

regarding consistency is how effectively all of the replicas can be found. If one replica

can always be located, but the others cannot be, then lookups will fail if the one

easy-to-locate replica becomes unavailable. Therefore, for each replica we compute

the number of lookups that found the replica, and plot the results as a CDF in

Figure 9.12b. An ideal curve would be a vertical line at x = 100%, indicating that

every query found every replica. The Figure shows that the performance for the

nearby-replication method is indeed good, with roughly 50% of queries able to find

every replica, and 80–90% of queries able to find 80% of the replicas.

In summary, our results show that locating the three closest nodes after finding

the closest peer is an effective way to cope with routing table inconsistencies. More

importantly, we show that even routing table inconsistencies can be a considerable

problem in practice with more than 11% of lookups failing when no replication is

used.

Comparing with eMule: Currently, eMule uses a fuzzy replication algorithm which

selects several peers as part of the endpoint set that are not necessarily the closest.

In addition to our experiments for different values of c, we also conducted more

than 60 experiments using eMule’s algorithms for publishing and lookup. We found

that eMule’s approach produces 19 copies on average and queries succeed 99.9% of

the time. While robust, this is 6.3 times more replicas than simply using c = 3.

Figure 9.12b shows the CDF of the percentage of all replicas each lookup found. The
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performance is substantially worse than the nearest-c approach, with many replicas

being found by only a few queries. For example, 50% of replicas could be found less

than one-third of the time, compared to just 3% for c = 3. Additionally, some replicas

were not found by any queries.

9.2.7 Related Work

Early work on DHTs focused on introducing new DHTs [23, 24, 26, 82] that each

achieved O(log n) lookup hops using O(log n) state per peer. Initially, it was difficult

to directly compare the performance of these DHTs, as each DHT has several tunable

parameters, which might cause them to perform better or worse under different loads.

For example, under low churn a DHT with a large routing table will perform better

since it can achieve faster lookups and route maintenance is inexpensive. The same

DHT will perform poorly under heavy churn.

Several studies [5, 28, 29, 104, 127, 128] have attempted to address the issue of

DHT performance under churn, in most cases using a simple Poisson model for session

length. However, several measurement studies of peer-to-peer systems [45, 48, 59, 64,

65] show that session times are dramatically different from Poisson. In this study, we

conduct experiments using the real Kad network, i.e., under real churn.

Gummadi et al. [129] showed that DHTs can be broken into two components:

geometry (or structure) and lookup strategy. Some DHT geometries provide greater

routing flexibility than others in terms of neighbor selection or route selection. For

example, in CAN a peer’s neighbors are precisely defined by the geometry, while in

Chord there are 2i−1 options for the ith neighbor, providing Chord substantially more

flexibility in selecting neighbors. Their results show that more flexible systems, such

as Chord and Kademlia, can achieve better performance. We utilize their division

between geometry and lookup to study the lookup behavior in light of the geometry

of the deployed Kad network.

Jinyang Li et al. [29] developed a performance-versus-cost framework (PVC) for

comparing different DHTs. Their key observation is that for a given bandwidth us-

age, there is a minimum lookup latency that can be achieved over the entire space
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of DHT parameters, and vice versa. In PVC, they simulate each DHT using a wide

variety of parameters and plot the best lookup latency each DHT can achieve within

a given bandwidth constraint. This allows them to compare how different DHTs

make the performance-versus-cost trade-off under a given load. They show that us-

ing large routing tables with infrequent stabilizations and parallel lookup achieves a

better balance than other approaches, culminating in their later development of the

Accordion DHT [69]. However, PVC can only draw conclusions about how well the

DHTs respond to the simulated workload. While their work is useful for drawing in-

ferences about design trade-offs, our work is aimed at optimizing tunable parameters

in a DHT that is already deployed.

In summary, prior work on DHTs has been driven by analysis, simulation, and lim-

ited experiments. In each case, a model is used to approximate or estimate real-world

behavior. This paper presents experiments on a deployed DHT that has approxi-

mately one million real users and develops tools and techniques for improving lookup

performance.

9.2.8 Summary and Future Work

This paper examines lookup performance over the Kad DHT network. We ana-

lytically derive new formulas for the expected hop count, taking into account random

improvements, and demonstrate that Kademlia’s use of k-buckets leads to signifi-

cantly better performance than previously reported. We present new tools, kFetch

and kLookup, to characterize the accuracy of routing tables in Kad, examine the im-

pact of routing table accuracy on efficiency and consistency of the lookup operation,

and experimentally verify our analysis. Furthermore, we explore two types of parallel

lookup techniques and their impact on lookup efficiency and also examine the degree

of replication needed to cope with routing inconsistency. While some of our empirical

results are specific to Kad, our analysis applies to other prefix-matching DHTs such

as Pastry and Tapestry and could be modified to handle other DHT geometries.

In our future work, we plan to measure the bandwidth eMule uses for route main-

tenance and study ways to maintain higher quality routing information at lower cost.
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We also plan to use our recent measurement-based characterization of churn in peer-

to-peer systems (Chapter 8) to determine the number of replicas needed to guarantee

the availability of a piece of data within the network. This will include a mathemat-

ical analysis of the trade-off between republishing the data more frequently to a few

peers versus publishing infrequently to many peers, followed by empirical experiments

to validate our findings.
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CHAPTER 10

Summary of Contributions

My dissertation lays an important foundation for understanding peer-to-peer sys-

tems. The main contributions fall into the following categories: (i) tools and tech-

niques for collecting accurate measurements of properties of peer-to-peer system, (ii)

empirical results which may be used to evaluate models and improve our understand-

ing of existing systems, and (iii) useful models based on the empirical observations.

Two basic types of measurement techniques are presented and carefully evaluated for

accuracy: a technique for capturing global snapshots (in Chapter 4 and a technique

for gathering unbiased samples (in Chapter 5). These techniques were developed into

tools, called Cruiser and ion-sampler, respectively, which provide the majority of

the data examined in later chapters of this dissertation.

Using the empirical data gathered using these new techniques, this dissertation

characterizes the properties of peer-to-peer systems along two axes, forming four

groups: static peer properties, dynamic peer properties, static connectivity properties,

and dynamic connectivity properties. Overall, this dissertation provides a tremendous

amount of information about properties of existing peer-to-peer systems, including

raw measurements, insights into underlying causes, and models that can be used for

simulation and analysis.

Each of the chapters in this dissertation includes many additional details, useful

for understanding and simulating peer-to-peer networks. Finally, the measurement

techniques developed for this dissertation will be useful for future measurement stud-
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ies of other properties of peer-to-peer systems. We conclude this dissertation with

Table 10.1, which summarizes the characterization contributions in each of the four

types of properties.

Property Known Before Contribution

Static Peer Properties

Geographic

distribution

— Gnutella is North America–centric,

with a strong European minority,

regardless of time of day.

Free riders Conflicting (25%–68%) More accurate measurements show

around 13%.

File sizes Almost all files are small,

but large files make up a

large fraction of all bytes

Confirmed

File types Mostly audio files, but

video files make up a

large fraction of all bytes

Confirmed. Video files have made

further gains in popularity since

the previous study.

File popularity Most files are unpopular,

but some files are

extremely popular

Confirmed. Additionally, the

distribution changed very little

over an 11-month measurement

period.

TABLE 10.1: Summary of characterization contributions. Fields marked with a “—” are previously

unstudied to the best of our knowledge.
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Property Known Before Contribution

Dynamic Peer Properties

Inter-arrival

times

—, assumed exponential Weibull provides a better fit. May

be due to composition of many

exponential distributions.

Session lengths Conflicting, often

described as heavy-tailed

or Pareto

BitTorrent data is not consistent

with Pareto. Weibull provides a

better fit. Gnutella and Kad data

were inconclusive.

Lingering after

completion

— Some peers in BitTorrent remain

hours, days, or weeks after

completion, leading to the high

percentage of seeds.

Peer uptime — Most sessions are short, but most

active peers have a long uptime.

Remaining

uptime

— Most sessions are short, but most

active peers have a long remaining

uptime.

Uptime

predictability

— Remaining uptime is correlated

with uptime so far, but with high

variance.

Session length

predictability

— Consecutive sessions are strongly

correlated in Gnutella and Kad,

but not in BitTorrent.

Correlations in

availability

— Availability over consecutive days

is strongly correlated in Gnutella

and Kad, but not in BitTorrent.

TABLE 10.1: (cont.)
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Property Known Before Contribution

Static Connectivity Properties

Top-level

degree

distribution

Power-law Exhibits a strong mode near

25–30, and not power-law.

Power-law may be a result of

measurement artifacts. Degree is

correlated with uptime.

Leafs per

ultrapeer

— Modes near 30 and 45 for

LimeWire and BearShare,

respectively.

Ultrapeers per

leaf

— Almost all in the range 1–3.

Shortest path

lengths

Nearly all shortest paths

are short (5 or less)

Confirmed, 99.5% have length 5 or

less.

Eccentricity — Eccentricity is in the range 6–12.

Small world Gnutella has a relatively

high clustering

coefficient.

Confirmed.

Resilience Gnutella is resilient to

random peer removals,

but not

highest-degree-first

removals.

More accurate measurements show

Gnutella is resilient to both types

of removals.

TABLE 10.1: (cont.)
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Property Known Before Contribution

Dynamic Connectivity Properties

Stable core — As a result of peer churn, an

emergent effect is an “onion-like”

bias where peers tend to be

neighbors with other peers with

similar uptime.

DHT stale

contacts

— In Kad, each 10-bucket on average

has 1.5 empty slots and 1 stale

contact.

DHT query

performance

Limited experiments on

toy systems

First study on a widely deployed

system. Query performance is

better than predicted by earlier

theoretical work. We revise the

theory to properly calculate

average performance.

DHT parallel

lookup

Limited experiments on

toy systems

For Kad, strict parallelism with

three parallel lookups is best.

DHT

redundancy to

ensure lookup

consistency

Limited experiments on

toy systems

For Kad, storing three copies near

the target provides excellent

consistency.

TABLE 10.1: (cont.)
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exponential, see exponential distri-
bution

log-normal, see log-normal distri-
bution

memoryless, see exponential distri-
bution

Pareto, see Pareto distribution
power-law, see Pareto distribution
shifted Pareto, see shifted Pareto

distribution
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distribution
Weibull, see Weibull distribution
Zipf, see Zipf distribution

downtime, 134–136
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FastTrack, see Kazaa
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related work, 83–84
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file types, 98–100
firewall, see NAT
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121, 123, 125, 206
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flooding, 7, 29, 153, 170
flow control, 28
free riders, 90–92
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GDF, see Gnutella Developer Forum
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bootstrapping, 27
Gnutella, 32, 42, 43, 46, 54–56, 59, 66,

71, 75, 79, 81, 82, 84–86, 89–92,
98, 100, 101, 103, 106, 107, 109,
110, 113–115, 117–120, 124–126,
128–137, 139–141, 143, 144, 146,
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123
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bootstrapping, 27
flow control, 28

GWebCache, 27, 66
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hop, 9, 27, 59, 65, 72, 73, 75, 155, 157,
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history, 8
related work, 18, 24, 83, 84

kFetch, 178, 187, 202
definition, 178

kLookup, 172, 178, 188, 193, 196, 198
definition, 178

Kolmogorov–Smirnov, 61, 73
KS, see Kolmogorov-Smirnov

latency, 193

Law of Large Numbers, 3
leaf peers, 7, 27, 33, 40, 41, 87–89, 91,

92, 107, 145–147, 151, 152, 155,
162, 182, 207

definition, 7
lifetime

definition, 23
LimeWire, 1, 28, 146, 151, 207

bootstrapping, 27
flow control, 28

lingering time, 126
definition, 126

log-normal distribution, 125
definition, 11

lookup consistency, 196–201
lookup efficiency, 190–196
lookup reply

definition, 175
lookup request

definition, 175
lookup

definition, 173

Maximum Likelihood Estimator, 121
measurement techniques, 17–20
Metropolis–Hastings method

definition, 52
MLE, see Maximum Likelihood Esti-

mator
modeling, 9–11
MRW, see Metropolized Random Walk
MRWB, see Metropolized Random Walk

with Backtracking
Mutella

bootstrapping, 27
flow control, 28

Napster, 1
history, 6
related work, 18, 22, 24, 83, 105

NAT, 38, 87, 116, 117
neighbors
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definition, 15
Network Address Translation, see NAT
node

definition, 14
node distortion, 40–42

definition, 39
Nullsoft

history, 6

Oracle, 66
overlay network

definition, 2
Overnet, 25, 105

history, 9
related work, 18, 24

parallel lookup, 172, 190–196, 202
loose

definition, 192
strict

definition, 192
Pareto distribution, 12, 25, 27, 63, 92,

144, 147
definition, 12
shifted, see shifted Pareto distribu-

tion
participate, 19
passive monitoring, 17–19, 21, 104
peer

definition, 14
peer-to-peer, 6

definition, 1
peers

definition, 1
pieces

definition, 8
power

definition, 13
power-law, 2, 6, 13, 16, 24, 26, 49, 54,

55, 63, 93, 95, 143, 144, 147,
148, 160, 207

definition, 12

power-law distribution, see Pareto dis-
tribution

power-law graph, 16, 26
definition, 16

probe, 20, 105
properties, 3

dynamic connectivity, see dynamic
connectivity properties

dynamic peer, see dynamic peer prop-
erties

static connectivity, see static con-
nectivity properties

static peer, see static peer proper-
ties

query properties, 170–203

random graph
definition, 15

random graph model
definition, 15

random walks, 51–52
reachability, 153–157
recursive routing, 175
related work, 17–30

dynamic peer properties, 104–106
file properties, 83–84
query properties, 201–202
sampling, 47–49

remaining uptime, 23, 24, 118, 130–133,
136, 206

definition, 23
resilience, 158–159
resolution

definition, 182

sampling, 44–78
from structured systems, 77–78
number of samples, 76–77
related work, 47–49

SC, see stable core
scale-free

definition, 12
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scale-free graph, see power-law graph
search

related work, 28–29
seeding time, see lingering time
session length, 4, 23, 57–59, 63, 65, 102–

105, 111–113, 118, 123–126, 128,
130, 136–137, 141, 201

definition, 23
shifted Pareto distribution, 125
shifted Pareto distribution, 63, 93

definition, 12
short-circuit effect

definition, 29
Skype, 1

related work, 18
small world, 55, 144, 157–158, 160
small-world graph, 84

definition, 15
Soft state, 66
SP, see stable peers
Split Symbols, 182, 184–186

definition, 180
stable core, 161–170

definition, 166
stable peers, 163, 165, 166

definition, 163
static connectivity properties, 4, 143–

160
related work, 26–27

static peer properties, 4, 79–101
related work, 22–23

stationary distribution
definition, 52

strongly regular graph
definition, 16

structured overlay, see distributed hash
table

subexponential distribution
definition, 11

swarming, 8
definition, 8

symbol size, 176, 179, 180, 182, 186

definition, 173

tail index
definition, 125

terminology, 5
test statistic

definition, 13
time-to-live, see TTL
timeout, 32, 34, 35, 43, 59, 66, 69, 192
tracker, 25, 66, 108, 109, 111, 114, 116,

120, 128
definition, 20

TTL, 7, 8, 153–155, 170
definition, 7

two-tier, 8, 30, 33, 43, 82, 146, 147, 151,
155, 157, 159

definition, 7

ultrapeer, 7, 8, 145, 207
definition, 7

undirected graphs
definition, 14

unreachable, 35–37, 87, 98, 148, 198
uptime, 4, 86, 105, 118, 128–132, 141,

150, 163–166, 168, 206–208
definition, 23

V
definition, 14

vertex
definition, 14

Watts–Strogatz, 16, 54–56
Weibull distribution, 63, 105, 121, 123,

125, 126, 142
definition, 11

Zipf distribution, 12, 25, 28, 83, 84, 95,
104

definition, 12
file popularity, 22
query popularity, 28
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