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Abstract— Peer-to-peer systems are becoming increasingly significant bias in two ways. The first cause of bias is the

popular, with millions of simultaneous users and a wide rang
of applications. Understanding existing systems and devigy
new peer-to-peer techniques relies on access to represeiita
models derived from empirical observations. Due to the larg
and dynamic nature of these systems, directly capturing gloal
behavior is often impractical. Sampling is a natural approah for
learning about these systems, and most previous studies yebn
it to collect data.

This paper addresses the common problem of selecting rep-

resentative samples of peer properties such as peer degrdmk
bandwidth, or the number of files shared. A good sampling tech
nigue will select any of the peers present with equal probaltity.

highly dynamic nature of these systems. It is easy to imagine
the overlay as a static graph from which we want to collect a
set of peers. However, gathering a set of samples takes time,
and during that time the graph will change. In Section II-A,
we show how this often leads to bias towards short-livedgpeer
and explain how to overcome this difficulty.

The second significant cause of bias is the graph properties
of the P2P topology. A naive approach will be heavily biased
towards high-degree peers. As the sampling program exglore
the graph, each link it traverses is much more likely to lead

HOWeVer, common Sampling techniques introduce bias in two to a h|gh_degree peer than a |0w_degree peer We descnbe

ways. First, the dynamic nature of peers can bias results toards
short-lived peers, much as naively sampling flows in a routecan
lead to bias towards short-lived flows. Second, the heterogeous
overlay topology can lead to bias towards high-degree peersVe
present preliminary evidence suggesting that applying a dgee-
correction method to random walk-based peer selection leadto
unbiased sampling, at the expense of a loss of efficiency.

I. INTRODUCTION

Peer-to-peer (P2P) systems are becoming increasingly
ular, with millions of simultaneous users [1] and covering &
wide range of applications, from file-sharing programs like
LimeWire and eMule to Internet telephony services such
Skype. Understanding existing systems and devising new
techniques relies on having access to representative smode
derived from empirical observations of existing systemswH
ever, due to the large and dynamic nature of P2P syste
it is often difficult or impossible to directly capture gldb
behavior. Sampling is a natural approach for learning abdlt

these systems using light-weight data collection, reliecbg

most previous studie®(g, [4], [19]). One challenge, however,

is ensuring that the samples are representativeifbiased.

This paper addresses the common problem of selectiﬁ
representative samples péer propertiesuch as peer degree,

a.

different techniques for traversing the overlay to selegrp in
Section II-B and evaluate them in Section Ill via simulatitm
this preliminary work, we simulate using two types of graphs
ordinary random graphs and an actual snapshot of the Gautell
graph topology [22]. In our ongoing work, we are adding other
types of random graphs, such as certain power-law random
graphs and small-world graphs, to explore the robustnetsgeof
pggpsidered techniques to different types of graph strastuBy
mparing and contrasting the performance of differertttec
nigues in different settings, we can gain a better undedatgn
gthe most efficient techniques to consistently yield uabdéh
only slightly biased) samples.
IIn summary, bias in sampling from P2P systems can be
introduced along two axesi) temporal (due to differences in
Iﬁger lifetimes) andii) topological (due to differences in peer
egree). Our findings show that these factors cause heasy bia
commonly used techniques such as breadth-first search and
random walks. We present preliminary evidence suggesting
that applying a degree-correction method to random walltdea
to unbiased sampling, at the expense of a loss of efficiency.
ction IV discusses related work, and Section V concludes

the paper with a summary of our findings and plans for future

link bandwidth, or the number of files shared [24]. To examin‘@ork'
peer properties, any sampling technique needs to locateé a se

of peers in the overlay and gather data from them. Initially,
the sampling program is aware of a handful of peers and

leveraging them to learn about additional peers. Typic#ilg

sampling program queries known peers to learn about th
neighbors, incrementally exploring a fraction of the osgrl
graph! A good sampling technique will select any of the pee
present with equal probability. However, as we will ShOV\g

Il. SAMPLING PEER PROPERTIES

Our goal in this paper is to tackle the common problem of
slarmpling peer propertieswhich covers a wide range of in-
eresting aspects. Examples include products of user b@hav
rgsuch as the number of files shared and link bandwidth), local
raph properties (such as degree and clustering coefficient

and dynamic properties (such as remaining uptime). Global

commonly used sampling techniques can easily introduce

1other sampling programs rely on passive monitoring or gogryfor

popular files, but such approaches are fundamentally bitmedrds peers

generating more traffic or with those files. We do not consttiem further.

properties, such as the graph diameter, cannot be detatmine
easily using sampling and tend to rely on heavy-weight
solutions, such as crawling the entire overlay [21].
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Collecting a sample of a property is a two-step process.vertexv; € UESOA V4, but rather to sample the property at

First, the selection process explores part of the P2P gverlg at a particular instant This means we must view; ; and
and selects a peer. Second, a property-specific measurementas distinct samples even though they come from the same
tool gathers the sample. For example, sampling the clasterpeer.The key difference is that it must be possible to sample
coefficient requires gathering the neighbor informationtfe from the same peer more than once, at different points in.time
selected peer and all of its neighbors. Sampling the remai¥e may accomplish this goal by sampling selectirandv; ;
ing uptime requires monitoring the peer until it departs thaniformly from the sets:
network. This paper is concerned with the first step, seigcti teltto+ Al vig €V,
a peer, which is the common aspect for sampling any p ’
property.

The goal is to select annbiasedsample, meaning selecting
the sample uniformly at random. Additionally, the samplingtudies relying on sampling use this approach
process should also befficient meaning that the sampling '

. Returning to our simple example, this approach will cor-
process should not have to explore a large portion of thehgralp . . :
. . . . _rectly select long-lived peers half the time and shortdive
o select an unbiased sample. As we described in SeCtlonele’ers half the time. When the samples are examined, they will
bias can be caused by the dynamic nature of P2P systéCJ S ' P » they

and by their graph structure. In the following two sectiores wo oW that half of the peers in the system at any given moment

) . . have many files while half of the peers have few files, which
introduce mechanisms to cope with these problems. .
is exactly correct.

A. Coping with dynamics We can now divide the sampling process into two pdijs:

We develop a formal and general model of a P2P systemsaeéecting times uniformly at random amﬁf)_ selecting peers
follows. If we take an instantaneous snapshot of the systemuglforr_nly a}t random from all peers available at_ that t|_me.
time ¢, we can view the overlay as a graghV, E) with the Selecting tl_mes_unlformly at random can b_e easily achleveq
peers as vertices and connections between the peers as e(? etgﬁnsratlngt t|mer? bhetweer; samples uslng Iflm texponen?al
Extending this notion, we incorporate the dynamic aspect rioution. At each chosen time, we must collect a sample

viewing the system as an infinite series of time-indexedlgsap :)or&eﬂrf orlzesegISecptirr?gegtvztrtézaL;zgfrhlyh;?hrarr?gg;e?rotﬁw tge
G: = G(V4, E¢). The most common approach for samplin . . )
K (Vi, Ei) bp P glaaph. We address this problem in the next subsection.

from this series of graphs is to define a measurement window,
gg{-to + A], and select peers uniformly at random from th%_ Coping with graph structure

s sampling technique will not be biased by the dynamics of
peer behavior, because the sample set is decoupled from peer
session lengths. To our knowledge, no prior P2P measurement

to+A In this section, we discuss several techniques for sefpctin

Vioto+a = U Vi vertices randomly from a graph. When sampling from a P2P
t=to system, we typically begin with knowledge of at least one
This formulation is appropriate if peer session lengths apeer and a method to query known peers for a list of their
exponentially distributedig., memoryless). However, exist-neighbors. The goal is to explore a small fraction of the
ing measurement studies [10], [17], [19], [22] show sessigraph yet return a peer (vertex) uniformly at random. In
lengths are heavily skewed, with many peers being pres&sction I, we will evaluate the techniques discussed welo
for just a short time (a few minutes) while other peers remairsing simulation.
in the system for a very long tima.€., longer thanA). As Two classical ways to explore a graph are via breadth-first
a consequence, a& increases, the sét;, ;.. includes an (BFS) and depth-first search (DFS), often used by sampling
increasingly large fraction of short-lived peers. techniques that crawl a portion of the overlay topology (as
A simple example may be illustrative. Suppose we wish ia [19]). These techniques add newly discovered peers to a
observe the number of files shared by peers. In this examplgeue and choose new peers to explore by removing them
system, half the peers are up all the time and have many filgsm the queue. They differ only in that BFS uses a FIFO
while the other peers remain for around 1 minute and ageleue while DFS uses a LIFO queue. Neither of these tech-
immediately replaced by new short-lived peers, who have faviques allows duplicates, automatically causing bias tdaa
files. The technique used by most studies would observe #feort-lived peers as described in the previous subsedfien.
system for a long time4) and incorrectly conclude that mostnevertheless include BFS in our simulations, to demorestrat
of the peers in the system have very few files. Moreover, thdirat it performs poorly even in a static system.
results will depend on how long they observe the system. TheAnother family of techniques are based on conducting a
longer they watch, the larger the fraction of observed peaendom walk. The simplest approach is to perform a random
with few files. walk of lengthr, select the ending peer as a sample, then
One fundamental problem of this approach is that it focusperform another walk of lengthr to get the next sample.
on samplingpeersinstead ofpeer propertieslt selects each While this technique offers low bias for some types of graphs
sampled vertex at most once. However, the property at the efficiency is somewhat Iow%o. Graph theory [8], [15]
vertex may change with time. Our goal should not be to selesiggests that a good choiceris> log |V].
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Oracle RWDC RSDC RW RS BFS Oracle RWDC RSDC RW RS BFS
Std. Deviation 32 32 32 206 207 210| | Std. Deviation 32 65 32 865 866 806
Skew 0.03 0.03 0.03 0.21 0.21 0.22 Skew 0.03 -4.28 0.03 47 47.92 17
Kurtosis -0.01 -0.01 0.00 0.04 0.03 0.08 Kurtosis -0.01 30 0.00 3084 3087 703
Efficiency 100% 2% 4% 8% 99%  99% Efficiency 100% 2% 4% 8% 99%  99%
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BIAS OF DIFFERENT SAMPLING TECHNIQUESSTATISTICS CORRESPONDING WITHFIGURE 1

A more efficient technique performs a random walk oo explore the performance of these techniques according to
length r, returns that peer as a sample, then continues ttoee criteria:
walk and return every additional peer along the walk as a, Bijas: Selecting some peers over others
sample [8]. However, by not walking steps between every , Correlation: Selecting related peers
sample, the samples may be correlated due to the inheri{ Efficiency: How much work is done to collect samples
relationship between adjacent peers. We call this tecleniqu In this preliminary work, we examine the behavior of

a “random stroll”. This technique is similar to DFS, excepéampling techniques over two types of grapliy:ordinary
it aII_ows dupIicate.s. Since we prefer alglorithms that alloy, - 4om graphs angii) a Gnutella ultrapeer topology snapshot
duplicates, we omit DFS from our evaluations. from February 2005, examined in detail in our previous work

One problem with random walk techniques is that they, characterizing the Gnutella topology [22]. To make uksefu
are biased towards high-degree peers. It is well-known tr}%mparisons, the random graphs have the same number of
they visit peers with frequency proportional to the peerSqriices (161,680) and edges (1,946,596) as the Gnutella
degree [15]. One way to compensate for this problem is to a'%pology. To generate edges for the random graphs, we select
the sample-selection criteria slightly. If a peer is a cdath pairs of nodes at random until we have the desired num-
for sampling, se_lect it Wi_th probabilitg whered is the Peers per of edges, skipping duplicate edges and self-edighi.
degree, otherwise continue the walk and consider the nexfyse to use these random graphs because they have simple
peer? _ _ _ properties and are easy to understand, making them a good

For comparison purposes, we can define an ideal sampliigseline for comparisons. We chose the Gnutella topology to
technique that uses an oracle to select a peer uniformly & mine how the sampling techniques would behave on a real
.random. from all peers that are currently presept. Whilemft%ystem_ Compared to a random graph, the Gnutella topology’s
impractical on real P2P networks, we can easily select pegisyree distribution is significantly more skewed, and it has
uniformly _at rz_;mdom ina S|mulat_or. There is no bias be_cau§?gnificantly more clustering. In our ongoing work, we are
the selection is not correlated wity other peer properties. exploring the robustness of these sampling techniques aver
In summary, we consider the following techniques: wide variety of common types of graphs.

o Uniformly random (Oracle)

« Breadth-first search (BFS)

« Random walk (RW)

« Random stroll (RS)

« Random walk with degree correction (RWDC)

« Random stroll with degree correction (RSDC)

A. Measuring Bias

Uniformly random sampling €.g, using an oracle) will
select each peer with equal probability. A poor sampling
technique will select some peers with much greater proiabil
than others. In a simulator, we can compare other sampling
techniques to the ideal as follows. For some gréfifv, E),
we use each sampling techni§ue select a very large number

) ) ) ) 3This process is not guaranteed to generate a connected, guatphill do
In Section 11-B we defined several techniques for samplireg with high probability.

peers from a P2P system. In this section, we use Simu|ati0ﬁ8ince BFS does not allow duplicates, it cannot saniplgV| peers in

one execution. To simulate realistic usage, we initiallyfgren one random
2We would like to thank Christos Gkantsidis of Microsoft Rass for walk to reach a random starting point, then perform a BFS tecio1,000
suggesting this technique.

I1l. EVALUATION

samples. We reinitialize the search and repeat until we kaJé&| samples.
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Fig. 2. Correlation of different sampling techniques; &ftellecting 1000 - |V| samples, the figures show for a pair of peers (A, B) what péagenof the
time (z-axis) did B appear whenever A appeared, as a CCDF over lomifiairs of (A, B).

of samples,k - |V| (for example,k = 1000). We record topology. In addition to drawing this conclusion based alku
how many times each node is selected. The typical node the presence or absence, respectively, of the bell-dhape
should be selected times, with other nodes being selectedurve centered around the meah £ 1000), the data in
close tok times approximately following a normal distributionTable | provides further evidence. For random graphs, tee/sk
with variancek.® A good sampling technique must produce and kurtosis for these techniques is close to zero, suggesti
similar distribution close to selecting uniformly at ramdo normality. For Gnutella, the skew and kurtosis are quitgdar
If the variance is higher, the technique is biased, unfairljhe bias in these techniques is caused primarily by setgctin
selecting some peers more than others. peers with higher degree, which explains why the results are
If a candidate technique produces a distribution similar fwormally distributed for ordinary random graphs (which éav
the ideal, this is evidence that the technique is unbiase approximately normally degree distribution) but nottfoe
Although it may be possible to deliberately construct a bddnutella topology (which does not).
sampling technique that would pass this test, in practice aFinally, we see that BFS behaves similarly to RW and RS
sampling technique with aystematic biasill have signif- for ordinary random graphs but not for the Gnutella topology
icantly more variance than the ideal. Some techniques magain, this is a result of the graphs’ degree distributidrigese
not even produce a normal distribution, resulting in highvek techniques respond the same way to normally distribute@ nod
and kurtosis (statistics which are very close to zero forasn  degrees, but respond differently to a more skewed distaibut
from a normal distribution). Specifically, the RW and RS techniques are very prone to
The results for each of our candidate techniques are showgpeatedly selecting the few high-degree peers in Gnutella
in Figure 1 usingt = 1000. Additionally, Table | presents the Because BFS maintains a short history and will not select the
standard deviation, skew, and kurtosis. In cases wherépieult Same high-degree nodes during the same sampling session, it
lines were visually indistinguishable, we have plottedyarmie iS somewhat more balanced, thus leading to a somewhat lower
of the lines for clarity. Specifically, RSDC performs just askew and kurtosis (as shown in Table I(b)).
well as selecting peers uniformly at random using an oracle.In summary, BFS, RW, and RS exhibit significant bias.
On the other hand, without degree correction both randdpegree correction for random walk and random stroll cause
walk (RW) and random stroll (RS) perform poorly, exhibitinghese techniques to perform well, with RSDC exhibiting no
significantly higher standard deviation than the ideal. BE® bias on either graph type.
exhibits significant bias. The bias of these techniquesss al
evidenced by large standard deviations, as shown in TableB. Measuring Correlation

Comparing the data for ordinary random graphs (Fig. 1(a), A technique that has an equal probability of selecting each
Tab. I(a)) and the Gnutella topology (Fig. 1(b), Tab. I(b)beer may still tend to select peers in groups. That is, thetees
several things become apparent. First, we see that Oraglgy becorrelated BFS is an obvious example of a technique
and RSDC perform the same on both types of topologiggith correlation; if a peer is selected, it becomes veryijikes
evidence that RSDC is unbiased and not adversely affectedd@ighbors will also be selected in the same sampling session
graph structure. Second, RWDC performs the same as Oragdléewise, random stroll may exhibit correlation since itesgs
and RSDC on the random graph but is slightly skewed qieighboring peers.
the Gnutella topology. We are unsure what introduces thisone method of measuring correlation is to examine the
bias in RWDC, but not RSDC, and plan to study this igjistribution of the percentage of sampling sessions in kwhic
our ongoing work by looking for patterns across the ovefode A is selected that also include node B, for all nodes A and
sampled and under-sampled peers from RWDC. Third, V& We define a sampling sessions as a set of 1,000 consecutive
see that the results for RW, RS, and BFS appear normadymples. A good sampling technique will show a very low
distributed for Ordinary random graphs but not for the Ghate percentage for every possib]e pair. A Samp“ng techr“qub wi

5Based on the normal approximation of a binomial distributisith p —  Significant correlation will contain some pairs of peersttha
ﬁ andn = k|V/| frequently appear together. If we plot the distribution as a



CCDF, this poor behavior will manifest as a long tail. Howand prove that a particular random algorithm can generate
ever, this method require3(n?) memory, which is somewhat all graphs in the class. Coopet al. [7] use this approach to
prohibitive forn = 161,680. To overcome this difficulty, we show their algorithm for overlay construction generategpbs
randomly select a large subset (1 million) of the possibiespawith good properties. Our work is quite different; instead
of nodes and examine the correlation between only those.paagf sampling a graph from a class of graplesir concern is
The results are shown in Figure 2. As expected, breaddampling peers from a particular graph
first search (BFS) exhibits significantly more correlatian ( Others use sampling to extract information from graphs,
longer tail) than any of the other techniques, followed byg.g, sampling a representative subgraph from a large, in-
RS. Interestingly, RSDC appears to perform just as well aactable graph, while maintaining properties of the origi
Oracle. The degree correction causes the random strolkéo taal [12], [13], [20]. Others use sampling as a component of
extra steps between selections, greatly decreasing therdmefficient, randomized algorithms [23]. However, these i&sid
of correlation. RWDC also performs well. rely on having knowledge of the graph in advance. Our prob-
Random walk without degree correction performs well ovéem is quite different because we have imperfect infornmatio
the ordinary random graphs but exhibits slight correlatioer A closely related problem to ours is sampling Internet
the Gnutella topology. This is again a case where the degre@ters by running traceroute from a few hosts to many ad-
distribution affects the performance of the sampling tégh@. dresses. Using simulation [14] and analysis [2], resedrolvs
Over the Gnutella topology, the sampling process for RW {Rat traceroute samples can lead to the appearance of a-power
so heavily biased (as shown in the previous subsection) layv degree distribution regardless of the true distributigke
the degree distribution that it causes correlations to odou our study, they evaluate sampling when there is imperfect
other words, a sampling session often returns a similar fsetigformation. Our study differs in its basic operation foagh-
high-degree peers. In the ordinary random graph, the biaseigloration. In their study, the basic operation is “Whathie
not strong enough to cause significant correlation sinceenggath to this address?”. In our study, the basic operation is
of the peers are of exceptional degree. “What are the neighbors of this peer?”.
C. Measuring Efficiency Another closely related problem is selecting web pages uni-
. i ) ) _ formly at random from the set of all web pages [3], [9], [18].
Aside from bias, another important metric for evaluatingyep pages naturally form a graph, with hyper-links forming
the usefulness of a _sampling technique is its efficiency. QBﬁgeS between pages. Unlike peer-to-peer networks, tiph gra
reason for sampling is to reduce the amount of work requirgdyirectedand only outgoing links are easily discovered. Much
to collect useful data. If the sampling technique is inedfitj of the work on sampling web pages therefore focuses on
it does not achieve that goal as well as an efficient techniqlé%timating the number of incoming links, to facilitate degr
Initially, any sampling technique begins with knowledgeaof qrrection. Unlike peers in peer-to-peer systems, webgpage
small set of peers in the system. It iteratively queries P&&T generally regarded as relatively stable, and temporalesaof
alist of their neighbors and returns a subset of these d&sedv sampling bias have not been considered in the web context.

peers as the samples. As the basic operation is the neighborgeyera| properties of random walks have been extensively

query, we measure the efficiency as follows: studied analytically [15], such as the access time, coveeti
efficiency— number of samples produced and mixing time. While these properties have many useful
number of peers queried applications,to our knowledge the application of randortke/a

A technique that is 100% efficient returns a sample sg§ a method of selecting nodes uniformly at random from
containing every peer that it queried. The efficiency doés ngn unknown graph has not been well studied. Additionally,
reveal anything about the quality of the samples; it is simphnalytical techniques are only useful for examining classfe
a measure of how easily the samples are collected. graphs which can be expressed mathematically, while in our

The efficiencies of the various techniques we examine ai@rk we also examine a graph (the Gnutella topology) that
shown in the bottom row of Table I. BFS and RS are both veyas captured empirically.
close to 100% efficient. However, as the previous subsextion A number of papers [6], [8], [16] have made use of random
have shown, they are also heavily biased. RW, in additiqfalks as a basis for searching unstructured P2P networks.
to being biased, is only 8% efficient. RWDC and RSDC aiqowever, searching simply requires locating a certain eiec
unbiased but are only 2% and 4% efficient, respectively. No§¢ dataanywherealong the walk, and is not particularly con-
that the efficiency of the degree correction techniquesmigpe cerned if some nodes are preferred over others. Gkantstdis

on the degree distribution of the graph. They will be morg| additionally use random walks as a component of their
efficient on low-degree graphs and less efficient on highrekeg gyerlay-construction algorithm.

graphs.

IV. RELATED WORK V. CONCLUSIONS ANDFUTURE WORK

Sampling from a class of graphs has been well studied inIn this paper we have explored several techniques for
the graph theory literature [5], [11], where they define a&glasampling from P2P systems. One of our contributions is to
of graphs sharing some propertg.qg, degree distribution) show that unbiased sampling must allow the same peer to



be selected multiple times to avoid bias correlated withr pele7] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. TherBitit P2P
sessions Iengths. File-sharing System: Measurements and Analysislntarnational
We simulated each technique over ordinary random gra| Workshop on Peer-to-Peer Systems (IPTRBPS.
q Yy g p[li]é P. Rusmevichientong, D. M. Pennock, S. Lawrence, ant.Giles.
as well as a real Gnutella topology and evaluated how much Methods for Sampling Pages Uniformly from the World Wide W

bias and correlation they introduce as well as their effijen ~ AAAI Fall Symposium on Using Uncertainty Within Computatio
. X . 2001.

We fo!md that the_co_mmonly Use‘?' BF_S teChmque'_ while efﬁ'g] S. Saroiu, P. K. Gummadi, and S. D. Gribble. Measuring an

cient, introduces significant sampling bias. Conductingloan Analyzing the Characteristics of Napster and Gnutella slost

walks is also significantly biased and additionally is ireéfint. Multimedia Systems Journa(2), 2003.

. . . 0] M. P. H. Stumpf, C. Wiuf, and R. M. May. Subnets of scaleef
The random stroll technique corrects the inefficiency, bift networks are not scale-free: Sampling properties of névor

remains significantly biased. Each of these techniques are Proceedings of the National Academy of Sciend@2(12), 2005.

biased due to the influence of the degree distribution. &1 D. Stutzbach and R. Rejaie. Capturing Accurate Snapsbiothe
d ib “d tion” dificati to th d Gnutella Network. InGlobal Internet Symposiuyn2005.
escribe a egree correcton” modification to € ran 0[512] D. Stutzbach, R. Rejaie, and S. Sen. CharacterizingrUctsired

walk and random stroll techniques that corrects the bias, oOverlay Topologies in Modern P2P File-Sharing Systemsinternet
resulting in samples that appear just as accurate as using@an Measurement Conferenc200S.

. L . . ] A. A. Tsay, W. S. Lovejoy, and D. R. Karger. Random Samgplin
oracle. However, there is a S|gn|f|cant decrease in eﬁ'g'en Cut, Flow, and Network Design ProblemBlathematics of Operations

when using these techniques. Research24(2), 1999.

In our ongoing work, we are extending our study to includ@4] S. Zhao, D. Stutzbach, and R. Rejaie. Characterizingskin the
additional types of random graphs, such as power-law random '\C/'ggqeprl?ﬁSg”:tﬁgaNgsNt‘gﬁgﬁgﬁ)%?asuremem Study. Ntultimedia
graphs and small-world graphs. By comparing and contmgstin
the performance of different techniques in different sesi
we can gain a better understanding of the most efficient
techniques to yield unbiased samples. Additionally, we are
exploring techniques for estimating global propertieshsas
the number of peers in a P2P system or the diameter of an
overlay network by exploring only a fraction of the graph.

REFERENCES

[1] slyck.com.htt p://ww. sl yck. com 2005.

[2] D. Achlioptas, A. Clauset, D. Kempe, and C. Moore. On thasBof
Traceroute Sampling; or, Power-law Degree Distributian&kegular
Graphs. InSymposium on Theory of Computirzp05.

[3] Z. Bar-Yossef, A. Berg, S. Chien, J. Fakcharoenphol, Bnd\Veitz.
Approximating Aggregate Queries about Web Pages via Random
Walks. InInternational Conference on Very Large Databas2800.

[4] R. Bhagwan, S. Savage, and G. Voelker. Understandinglafbikty.

In International Workshop on Peer-to-Peer Syste@G03.

[5] B. Bollobas. A probabilistic proof of an asymptotic foula for the
number of labelled regular graphEuropean Journal of
Combinatorics 1, 1980.

[6] Y. Chawathe, S. Ratnasamy, and L. Breslau. Making Glaitidle P2P
Systems Scalable. ISIGCOMM 2003.

[7] C. Cooper, M. Dyer, and C. Greenhill. Sampling regulaaprs and a
peer-to-peer network. I8ymposium on Discrete Algorithp2005.

[8] C. Gkantsidis, M. Mihail, and A. Saberi. Random Walks in
Peer-to-Peer Networks. IINFOCOM, 2004.

[9] M. Henzinger, A. Heydon, M. Mitzenmacher, and M. Najo®n
Near-Uniform URL Sampling. Innternational World Wide Web
Conference 2001.

[10] M. Izal, G. Urvoy-Keller, E. W. Biersack, P. A. Felber,. A. Hamra,
and L. Garces-Erice. Dissecting BitTorrent: Five Monthaifiorrent’s
Lifetime. In PAM, 2004.

[11] M. Jerrum and A. Sinclair. Fast uniform generation gjular graphs.
Theoretical Computer Sciencé3, 1990.

[12] V. Krishnamurthy, M. Faloutsos, M. Chrobak, L. Lao,H.-Cui, and
A. G. Percus. Reducing Large Internet Topologies for Faster
Simulations. InIFIP Networking 2005.

[13] V. Krishnamurthy, J. Sun, M. Faloutsos, and S. Tauranflang
Internet Topologies: How Small Can We Go? Imernational
Conference on Internet Computing003.

[14] A. Lakhina, J. W. Byers, M. Crovella, and P. Xie. SamgliBiases in
IP Topology Measurements. INFOCOM 2003.

[15] L. Lovasz. Random walks on graphs: A surve§ombinatorics: Paul
Erdos is Eighty 2, 1993.

[16] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and
Replication in Unstructured Peer-to-Peer NetworksIniternational
Conference on Supercomputjrig002.


http://www.slyck.com

	Introduction
	Sampling Peer Properties
	Coping with dynamics
	Coping with graph structure

	Evaluation
	Measuring Bias
	Measuring Correlation
	Measuring Efficiency

	Related Work
	Conclusions and Future Work
	References

