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Abstract These applications have changed in many ways to accom-

During recent years, peer-to-peer (P2P) file-sharing Sysr_nodate growing numbers of participating peers. In these

. ’“applications, participating peers form an overlay which
tems have evolved in many ways to accommodate growin bp b pating p y

numbers of participating peers. In particular, new featuregrOViOIeS connectivity among the peers to search for de-
P pating p - nP ’ Sired files. Typically, these overlays anestructuredvhere

POaV;oChirc]’?ﬁ%éh; ?;Zg:rt'gzrgf ItDr:aes q?esiﬁi;:u'rr‘r?do?t\;?qréa eers select neighbors through a predominantly random
opology y P - Despl Irimp . process, contrasting witlstructured overlays, i.e., dis-
little is known about the characteristics of these topologies .
) o . . S ributed hash tables such as Chord [29] and CAN [22].
and their dynamics in modern file-sharing applications. ) . .
Most modern file-sharing networks usetvao-tier topol-

This paper pr_esents a dgtailed ch_aracteriza_tion of P2|8gy where a subset of peers, calletrapeers form an
overlay topologies and their dynamics, focusing on the

dern Gnutell awork. Usi tact and ¢ PZlgnstructured mesh while other participating peers, called
modern Lnutelia network. Using our fast and accurate Pl ¢ peers are connected to the top-level overlay through
crawler, we capture a complete snapshot of the Gnutell

Bne or multiple ultrapeers. More importantly, the overla
network with more than one million peers in just a few P P P ¥, y

: L : han 18.000 | topology is continuously reshaped by both user-driven dy-
minutes. Leveraging more than 18, recent overlay SNaamics of peer participation as well as protocol-driven dy-

shots, we characterize the graph-related properties of IndHamics of neighbor selection. In a nutshell, as participating

\éldléal ofv Erlaly(/ tsnz;;psrllots andhO\t/erI\z/;\vy d);lnamr:cs across hu yeers join and leave, they collectively, in a decentralized
reds of back-to-back Shapshaots. We SNowW oW InacCuratesspinn  form an unstructured and dynamically changing

in snapshots can lead to erroneous conclusions—such aso@erlay topology
power-law degree distribution. Our results reveal that while The design a.nd simulation-based evaluation of new

the Gnutella network has dramatically grown and changed h and lication techni h ved h at
in many ways, it still exhibits the clustering and short pathSearc and replication techniques has received much at-

lengths of a small world network. Furthermore, its overlaytem'on in recent years. These studies often make certain

topology is highly resilient to random peer departure anGassumptlons about topological characteristics of P2P net-

even systematic attacks. More interestingly, overlay dy-WorkS .9, power-law degree distribution) and usually ig-

namics lead to an “onion-like” biased connectivity amongnore the dynamic aspects of overlay topologies. However,

peers where each peer is more likely connected to peerl%tle is knqwn abo_ut the to-poI(.)gicaI chgracteristics of pop-
with higher uptime. Therefore, long-lived peers form a stg-ular P2P file sharing applications, particularly about over-

ble core that ensures reachability among peers despite Ové?-y dynamics. Animportant fact_or to note is that PFOF’erF'eS
lay dynamics. of unstructured overlay topologies cannot be easily derived

from the neighbor selection mechanisms due to implemen-
tation heterogeneity and dynamic peer participation. With-
1 Introduction out a solid understanding of topological characteristics in
file-sharing applications, the actual performance of the pro-
The Internet has witnessed a rapid growth in the popularPosed search and replication techniques in practice is un-
ity of various Peer-to-Peer (P2P) applications during recenknown, and cannot be meaningfully simulated.
years. In particular, today’s P2P file-sharing applications Accurately characterizing the overlay topology of a large
(e.g, FastTrack, eDonkey, Gnutella) are extremely popu-scale P2P network is challenging [33]. A common ap-
lar with millions of simultaneous clients and contribute a proach is to examine properties of snapshots of the overlay
significant portion of the total Internet traffic [1, 13, 14]. captured by a topology crawler. However, capturing ac-
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curate snapshots is inherently difficult for two reasdis: §1.4e + 06 — )
the dynamic nature of overlay topologies, &l a non- 21.2¢ + 06 — '
negligible fraction of discovered peers in each snapshot areg 1€+ 06 7 T
not directly reachable by the crawler. Furthermore, the ac- 4 gggggg ] L I
curacy of captured snapshots is difficult to verify due to the 400000
lack of any accurate reference snapshot. 200000 —

Previous studies that captured P2P overlay topologies.(% 0 T
with a crawler either deployed slow crawlers, which in- AprMayJun Jul AugSepOctNovDecJanFetMar
evitably lead to significantly distorted snapshots of the Time
overlay [23], or partially crawled the overlay [24, 18] which
is likely to capture biased (and non-representative) snapFigure 1: Change in network size over months. Vertical
shots. These studies have not examined the accuracy bérs show variation within a single day.
their captured snapshots and only conducted limited anal-
ysis of the overlay topology. More importantly, these few ) . .
studies (except [18]) are outdated (more than three years e investigate the underlying causes of the observed
old) since P2P filesharing applications have significantlyPToPerties and dynamics of the overlay topology. To the
increased in size and incorporated several new topolog€Xt€Nnt possible, we conduct our analysis in a genegg (
cal features over the past few years. An interesting recerfenutella-independent) fashion to ensure applicability to
study [18] presented a high level characterization of the®ther P2P systems. Our main findings can be summarized

two-tier Kazaa overlay topology. However, the study doegS follows:

npt contain detailed graph-related prop_erties ofthe overlay. o |4 contrast to earlier studies [7, 23, 20], we find that
Finally, to our knowledge, the dynamics of unstructured e degree does not exhibit a power-law distribution.
P2P overlay topologies have not been studied in detail i \yie show how power-law degree distributions can re-

any prior work. sult from measurement artifacts.
We have recently developed a set of measurement tech-

nigues and incorporated them into a parallel P2P crawler, ¢ While the Gnutella network has dramatically grown
calledCruiser[30]. Cruiser can accurately capture a com- and changed in many ways, it still exhibits the clus-
plete snapshot of the Gnutella network with more than one  tering and the short path lengths of a small world net-
million peers in just a few minutes. Its speed is several or-  work. Furthermore, its overlay topology is highly re-
ders of magnitude faster than any previously reported P2P  silient to random peer departure and even systematic
crawler and thus its captured snapshots are significantly — removal of high-degree peers.
more accurate. Capturing snapshots rapidly also allows us
to examine the dynamics of the overlay over a much shorter
time scale, which was not feasible in previous studidss
paper presents detailed characterizations of both graph-
related properties as well as the dynamics of unstructured
overlay topologies based on recent large-scale and accu- 4 The longer a peer remains in the overlay, the more
rate measurements of the Gnutella network. it becomes clustered with other long-lived peers with
similar uptimé. In other words, connectivity within
1.1 Contributions the core oyerlay exhibits an “onion-like” bias where
most long-lived peers form a well-connected core, and
Using Cruiser, we have captured more than 18,000 snap- @ group of peers with shorter uptime form a layer with
shots of the Gnutella network during the past year. We @ relatively biased connectivity to each other and to
use these snapshots to characterize the Gnutella topology Peers with higher uptime.g., internal layers).
at two levels:

ultaneo

e Long-lived ultrapeers form a stable and densely con-
nectedcore overlay providing stable and efficient
connectivity among participating peers despite the
high degree of dynamics in peer participation.

, o 1.2 Why Examine Gnutella?
e Graph-related Properties of Individual Snapshdi¢e
treat individual snapshots of the overlay as graphs anéDonkey, FastTrack, and Gnutella are the three most
apply different forms of graph analysis to examine popular P2P file-sharing applications today, according to
their propertiek Slyck.com [1], a website which tracks the number of users
for different P2P applications. We elected to first focus on
e Dynamics of the OverlayWe present new method- the Gnutella network due to a number of considerations.
ologies to examine the dynamics of the overlay and its  First, a variety of evidence indicates that the Gnutella
evolution over different timescales. network has a large and growing population of active users



and generates considerable traffic volume. Figure 1 depictisg peers and collects information about their neighbors.
the average size of the Gnutella network over an elevein practice, capturing accurate snapshots is challenging for
month period ending February 2005, indicating that nettwo reasons:

work size has more than tripled (from 350Kt million (i) The Dynamic Nature of Overlays. Crawlers are not
peers) during our measurement period. We also observéddstantaneous and require time to capture a complete snap-
time-of-day effects in the size of captured snapshots, whiclshot. Because of the dynamic nature of peer participa-
is a good indication of active user participations in the Gnu-tion and neighbor selection, the longer a crawl takes, the
tella network. Also, examination of Internet2 measuremeninore changes occur in participating peers and their con-
logs’® reveal that the estimated Gnutella traffic measured omections, and the moxdistortedthe captured snapshot be-
that network is considerable and growing. For examplecomes. More specifically, any connection that is estab-
for the 6 week period0/11/04 — 11/21/04, the Gnutella lished or closed during a crawil€., changing connections
traffic on Internet2 was estimated to [3@.69 terabytes, is likely to be reported only by one end of the connection.
up from21.52 terabytes for & week period §2/02/04 — We note that there is no reliable way to accurately resolve
03/14/04) earlier that year. the status of changing peers or changing connections. In

Second, Gnutella, which was the first decentralized P2R nutshell, any captured snapshot by a crawler will be dis-
system, has evolved significantly since its inception intorted, where the degree of distortion is a function of the
2000. While it is among the most studied P2P networkscrawl duration relative to the rate of change in the overlay.
in the literature, prior studies are at least 2—3 years old, an¢li) Unreachable Peers. A significant portion of discov-
mostly considered the earlier flat-network incarnation. Aered peers in each snapshot are not directly reachable since
detailed measurement study of the modern two-tier Gnuthey have departed, reside behind a firewall, or are over-
tella network is therefore timely and allows us to compareloaded [30]. Therefore, information about the edges of the
and contrast the behavior today from the earlier measuresverlay that are connected between these unreachable peers
ment studies, and to gain insights into the behavior and imwill be missing from the captured snapshots.
pact of the two-tier, unstructured overlay topologies which  We argue that sampling a snapshot of unstructured net-
have been adopted by most modern P2P systems. works through partial crawls [24] or passive monitor-

Third, our choice was also influenced by the fact thating [25] is not a reliable technique for an initial character-
Gnutella is the most popular P2P file-sharing network withization of the overlay topology for the following reasons:
an open and well-documented protocol specification. Thigi) in the absence of adequate knowledge about the prop-
eliminates (or at least significantly reduces) any incompatierties and dynamics of the overlay topology, it is difficult
bility error in our measurement that could potentially oc-to collect unbiased samples. For example, partial crawl-
cur in other proprietary P2P applications that have beeing of the network can easily result in a snapshot that is
reverse-engineered, such as FastTrack/Kazaa and eDonkejased towards peers with higher degrgg;some graph-

The rest of this paper is organized as follows: Section Jevel characteristics of the overlay topology, such as the
provides a description of the modern Gnutella P2P overmean shortest path between peers (which we discuss in
lay network and describes the fundamental challenges iSubsection 4.2) cannot be accurately derived from partial
capturing accurate snapshots. We present a brief overvieshapshots. Because of these reasons, we attempt to cap-
of our crawler in Section 3. Section 4 presents a detailedure snapshots as complete as possible and use them for
characterization of graph-related properties of individualour characterizations.
snapshots as well as the implications of our findings. In  To describe our measurement methodology for address-
Section 5, we examine overlay dynamics, their underlyingng the above challenges, we provide a brief description

causes, and their implications on design and evaluation abf modern Gnutella as an example of a two-tier P2P file-
P2P applications. Section 6 presents an overview of relatesharing application.

work and Section 7 concludes the paper.
2.1 Modern Gnutella

In the original Gnutella protocol, participating peers form
To accurately characterize P2P overlay topologies, we neealflat unstructured overlay and use TTL-scoped flooding of
to capturecompleteand accuratesnapshots. By “snap- search queries to other peers. This approach has limited
shot”, we refer to a graph that presents all participatingscalability. To improve the scalability of the Gnutella pro-
peers (as nodes) and the connections between them (&xol, most modern Gnutella clients adopt a new overlay
edges) at a single instance in time. The most reliablestructure along with a new query distribution mechanism
and thus common, approach to capture a snapshot is s follows:
crawl the overlay. Given information about a handful of (i) Two-tier Overlay A new generation of popular file-
initial peers, the crawler progressively contacts participatsharing applications have adoptetha-tier overlay archi-

2 Background



Cruiser: We have developed a set of measurement tech-
nigues into a parallel Gnutella crawler, call€dliser[30].
While the basic crawling strategy by Cruiser is similar to
other crawlers, it improves the accuracy of captured snap-
shots by significantly increasing the crawling speee.,(
Figure 2: Two-tier Topology of Modern Gnutella reducing crawl duration) primarily by using the following
techniques: First, Cruiser employs a master-slave architec-
ture in order to achieve a high degree of concurrency and
tecture to improve their scalability: a subset of peers, calledo effectively utilize available resources on multiple PCs.
ultrapeers form atop-leveloverlay while other participat- Using a master-slave architecture also allows us to deploy
ing peers, calledeaf peersare connected to the top-level Cruiser in a distributed fashion if Cruiser’s access link be-
overlay through one or multiple ultrapeers (Figure 2). Fastcomes a bottleneck. The master process coordinates mul-
Track (or Kazaa), Gnutella, and eDonkey all use some varitiple slave processes that crawl disjoint portions of the net-
ation of this model. Those peers that do not implement thavork in parallel. Each slave crawler opens hundreds of par-
ultrapeer feature, callddgacypeers, can only reside in the allel connections, contributing a speed-up of nearly three
top-level overlay and do not accept any leaves. When arders of magnitude.
leaf connects to an ultrapeer, it uploads a set of hashes of Second, Cruiser leverages the two-tier structure of the
its filename keywords to that ultrapeer. This allows the ul-modern Gnutella network by only crawling the top-level
trapeer to only forward messages to the leaves who mighgeers ie., ultrapeers and legacy peers). Since each leaf
have matching files. This approach reduces the number ghust be connected to an ultrapeer, this approach enables
forwarded messages towards leaf peers which in turn ings to capture all the nodes and links of the overlay by con-
creases the scalability of the network by a constant factogacting a relatively small fraction of all peers. Overall, this

I.f%af peers never forward messages. _ strategy leads to around an 85% reduction in the duration
(i) Dynamic Query The Gnutella developer community of a crawl without any loss of information.
has adopted a new scheme for query distribution céled These techniques collectively result in a significant in-

namic Querying9]. The goal in this scheme is to only crease in crawling speedCruiser can capture the Gnu-
gather enough results to satisfy the user (typically 50 to 20Qe||a network with one million peers in around 7 minutes
results). Rather than forwarding a query to all neighborsysing six off-the-shelf 1 GHz GNU/Linux boxes in our lab.
ultrapeers manage the queries for their leaves. Toward thigyyiser's crawling speed is about 140K peers/minute (by
end, an ultrapeer begins by forwarding a query to a subsefjrectly contacting 22K peers/minute), This is orders of
of top-level connections using a low TTL. From that point magnitude faster than previously reported crawldrs.(2

on, the query is flooded outward until the TTL expires. Thenoyrs for 30K peers (250/minute) in [23], and 2 minutes for
ultrapeer then waits for the results, and uses the ratio besk peer (2.5K/minute) in [24]) It is worth clarifying that
tween the number of results and the estimated number Qfhile our crawling strategy is aggressive and our crawler
visited peers to determine how rare matches are. If matchggquires considerable local resources, its behavior is not in-
are rare i(e., there are few or no responses), the query isysive since each top-level peer is contacted only once per
sent through more connections with a relatively high TTL. crqwl.

If matches are more common but not sufficient, the quenpag_processing: Once information is collected from all

is sent down a few more connections with a low TTL. This o5 chaple peers, we perform some post-processing to re-
process is repeated until the desired number of results ai&oye any obvious inconsistencies that might have been in-
collected or the ultrapeer gives up. Each ultrapeer estimatgg,qyced due to changes in the topology during the crawl-
the number of visited ultrapeers through each neighbofyg period. Specifically, we include edges even if they are
based on the following formulay_;_; ~ (d —1)". This  gnjy reported by one peer, and treat a peer as an ultrapeer if

formula assumes that all peers have the same node degréeneighbors with another ultrapeer or has any leaves. Due
d. When Dynamic Querying was introduced, the numbery, e inconsistencies, we might over-count edges by about
of neighbors each ultrapeer attempts to maintain was inje, and ultrapeers by about 0.5%.

creasgd to aIIo_vv_ more fine-grained con_trol with Dyn‘rjuT"CUnreachable Peers. We have carefully examined the ef-
Querying by giving ultrapeers more neighbors to choos%ct of unreachable peers on the accuracy of captured snap-
from. shots [33]. Previous studies assumed that these unreachable
peers departed the network or are legacy peers that reside
3 Capturing AcCcur ate Snapshots behind a firewall (or NAT), and simply excluded this large
group of unreachable peers from their snapshot. Itis impor-
In this section, we present an overview of our data collectant to determine what portion of unreachable peers are de-
tion and post-processing steps. parted or NATed because each group introduces a different



Crawl Date | Total Nodes| Leaves Top-level UnreachableTop-Level Edges
09/27/04 725,120 | 614,912 110,208 35,796 1,212,772
10/11/04 779,535 | 662,568 116,967 41,192 1,244,219
10/18/04 806,948 | 686,719 120,229 36,035 1,331,745
02/02/05 | 1,031,471 | 873,130 158,345 39,283 1,964,121

Table 1: Sample Crawl Statistics

Implementation: | LimeWire | BearShare| Other

error on the snapshot. However, there is no reliable test to
Percentage: T4%—77% | 19%—-20% | 4%—6%

distinguish between departed and firewalled peers because
firewalls can time out or refuse connections depending on
their configuration.

In summary, our investigation revealed that in each

crawl, 30%-38% of discovered peers are unreachable. lthrough multiple ultrapeers. We treat individual snapshots
this group, the breakdown is as follows: 2%—-3% are deqfthe overlay as graphs and apply different forms of graph
parted peers, 15%-24% are firewalled, and the remaimgnalysis to examine their properties. We pay special atten-
ing unreachable peers (3%-21%) are either also firewalleglo, to the top-level overlay since it is the core component
or overwhelmed ultrapeers. However, since Cruiser onlyyf the topology. Throughout our analysis, we compare our
needs to contaatither end of an edge, it is able to dis- findings with similar results reported in previous studies.
cover at least 85%-91% of edges. Since firewalled peergowever, it is important to note that we are unable to de-
cannot directly connect togethere(, cannot be located at termine whether the reported differences (or similarities)
both ends of a missing edge) and they constitute more thagre due to changes in the Gnutella network or due to inac-
half of 'Fhe unrgachable peers, the actual portion of missinguracy in the captured snapshots of previous studies.
edges.|s .conS|derany smaller. . Table 1 presents summary information of four sample
Quantifying Snapshot Accuracy: We rigorously exam- gnanshots after post-processing. The results in this section
ined the effect of crawling speed and duration on two di-p e brimarily from the snapshots in Table 1. However, we
mensions of snapshot accuracy: completeness and distqfaye examined many other snapshots and observed similar
tion. Our evaluations [30] revealed tH{@tCruiser captures  yonqs and behaviors. Therefore, we believe the presented
nearly all ultrapeers and the pair-wise connections betweepgits are representative. Presenting different angles of the

them and the majority of connections to leavéi§; Both  s3me subset of snapshots allows us to conduct cross com-
node distortion and edge distortion in captured SnapShOtﬁarisons and also relate various findings

increases linearly with the crawl duration; afiii) snap- . . o
shots captured by Cruiser have little distortion. For ex- In this section, we explore the node degree distribution in

ample, we found that two back-to-back snapshots diﬁere(?u.bsectlon 4.1,the r.eachablllty. and pairwise distance prop-
; X . erties of the overlay in Subsection 4.2, small world charac-
only 4% in their peer populations.

Data Set: We have captured more than 18,000 SnapshOttserls'ucs in Subsectlon 4.3, and the resilience of the overlay
. ih Subsection 4.4.

of the Gnutella network during the past eleven monthsI | ion H itv: Th f th

(Apr. 2004—Feb. 2005) with Cruiser. In particular, we col- ' TP ementation Heterogenaity: The open nature of the

lected back-to-back snapshots for several one-week inteF—;nUtella protocol has led to several known (and possibly

vals as well as randomly distributed snapshots during varimany unknovyn)-|mplement§t|ons. .It IS 'mpo”"’Tm (0 de-
mine the distribution of different implementations (and

ous times of the day to ensure that captured snapshots al p ) L ) heir d
representative. In Section 4, we use four of these snapsho?gn igurations) among participating peers since their de-

to illustrate graph properties of the overlay topology. InSign choices directly affect the overall properties of the

Section 5, we use sets of hundreds of back-to-back sna;ﬁ)-verlay topology._ This will help us explain some of the_
shots to examine how the overlay topology evolves Withobserved properties of the overlay. Table 2 presents the dis-
time tribution of differentimplementations across discovered ul-

trapeers. This table shows that a clear majority of contacted
ultrapeers use the LimeWire implementation. We also dis-
covered that a majority of LimeWire ultrapeers (around

94%) use the most recent version of the software available

The two-tier overlay topology in modern Gnutella (as well at the time of the crawl. These results reveal that while het-
as other unstructured P2P networks) consists of ultrapeeff0geneity exists, nearly all Gnutella users run LimeWire
that form a “spaghetti-like” top-level overlay and a large Or BearShare.

group of leaf peers that are connected to the top-level We are particularly interested in the number of connec-

Table 2: Distribution of Implementation

4 Overlay Graph Properties
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Figure 3: Different angles of the top-level degree distribution in Gnutella topology

tions that are used by each implementation since this desigpiece power-law distribution, the result reported by earlier
choice directly affects the degree distribution of the overallstudies [2, 7].To a slow crawler, peers with long uptimes
topology. This information can be obtained from availableappear as high degree because many short-lived peers re-
LimeWire source code. However, not all implementationsport them as neighbors. However, this is a mischaracter-
are open, and users can always change the source codeipdtion since these short-lived peers are not all present at
open implementations. Thus, we need to collect this inforthe same time. More importantly, this finding demonstrates
mation from running ultrapeers in action. that using distorted snapshots that are captured by slow

Our measurements reveal that LimeWire’s and Bearcrawlers can easily lead to incorrect characterizations of
Share’s ultrapeer implementations prefer to serve 30 and 4B2P overlays.

|ea..VeS, reS.peCtive|y, whereas both tl‘y to maintain around 30 Because we were unable to contact every top_'eve' peer,
neighbors in the top-level overlay. the distribution in Figure 3(a) is biased slightly low since
it does not include all edges. To address this problem, we
A . split the data into Figures 3(b) and 3(c), which depict the
4.1 Node Degree Distributions neighbor degree distribution for reachable and unreachable

The introduction of the two-tier architecture in the over- P€ers, respectively. The data in Figure 3(b) is unbiased
lay topology along with the distinction between ultrapeerssince we contacted each peer successfudly,we discov-

and leaf peers in the modern Gnutella protocol demand§red every edge connected to these peers. The spike around
a close examination of the different degree distributions® degree of 30 is more pronounced in this figure. Fig-
among different group of peers. ure 3(c) presents the observed degree distribution for un-

Node Degreein the Top-Level Overlay: Previous studies éachable top-level peerisg(, overloaded or NATed). This
reported that the distribution of node degree in the Gnu_dlstr!bu'uon is biased _Iow since we cannotob_serve the con-
tella network exhibited a power-law distribution [23, 2, 7] nections bet_vveen pairs of these peers. In this data, a much
and later changed to a two-segment power-law distripu9reater fraction of peers have an observed degree below 30.
tion [20, 23]. To verify this property for the modern Gnu- Many_of these peers propably have a 'Frue degreg cIo;er to
tella network, Figure 3(a) depicts the distribution of node30, with the true distribution likely similar to that in Fig-
degree among all peers (both unreachable and reachabl¢$® 3(b).

in the top-level overlay for the four sample snapshots pre- The degree distribution among contacted top-level peers
sented in Table 1. This distribution has a spike arounchas two distinct segments around a spike in degree of 30,
30 and does not follow a power-l4w A key question is  resulting from LimeWire and BearShare’s behavior of at-
to what extent this difference in degree distribution is duetempting to maintain 30 neighbors. The peers with higher
to the change in the overlay structure versus error in cap-degree represent other implementations that try to main-
tured snapshots by earlier studie$o examine this ques- tain a higher node degree or the rare user who has modi-
tion, we captured a distorted snapshot by a slow crawlerfied their client software. The peers with lower degree are
which is similar to the 50-connection crawler used in anpeers which have not yet established 30 connections. In
earlier study [23]. Figure 4(a) depicts the degree distribu-other words, the observed degree for these peers is tempo-
tion based on this distorted snapshot, which is significantlyary. They are in a state of flux, working on opening more
more similar to a two-piece power-law distributforif we  connections to increase their degree. To verify this hypoth-
further slow down the crawling speed, the resulting snapesis, we plot the mean degree of peers as a function of their
shots contains a higher degree of edge distortion, and the@ptime in Figure 5. The standard deviation for these mea-
derived degree distribution looks more similar to a single-surements is quite large (aroufd- 13), indicating high
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Figure 4: Different angles of degree distribution in Gnutella

i outlier peers with an unusually high degree of connectiv-
§ ity in all degree distributions in this subsection. The main
T incentive for these peers is to reduce their mean distance
%.’L to other peers. To quantify the benefit of this approach,
‘E 12 - 10/16/2004—— Figure 6(a) presents the mean distance to other peers as
s 1% h 10/22/2004 -+ a function of node degree, averaged across peers with the
2§ F—T—T— 111/26/2,004""}D """ , same degree. We show this for both the top-level overlay
0 500 1000 1500 2000 2500 3000 3500 and across all peers. This figure shows that the mean path
Time in top-level (minutes) to participating peers exponentially decreases with degree.

In other words, there are steeply diminishing returns from
Figure 5: Mean degree as a function of uptime. Standarihcreasing degree as a way of decreasing distance to other
deviation is large (7-13). peers.

Turning our attention to the effects of high-degree peers

on the overlay, for scoped flood-based querying, the traffic
variability. When peers first arrive, they quickly establish these nodes must handle is proportional to their degree for
several connections. However, since node churn is higheaves and proportional to the square of their degree for ul-
they are constantly losing connections and establishing NeWapeers. Note that high-degree ultrapeers may not be able,
ones. As time passes, long-lived peers gradually accumigr may not choose, to route all of the traffic between their
late stable connectionsto other long-lived peers. We furtheﬁeighbors. Thus, they may not actually provide as much
eXplore. this issue in Section 5 when we examine OVerIay:onnectivity as they appear to' aﬁecting the performance
dynamics. of the overlay.
Node Degree For Leaves: To characterize properties of  During our analysis, we discovered around 20 ultrapeers
the two-tier topology, we have examined the degree distri(all on the same /24 subnet) with an extremely high de-
bution between the top-level overlay and leaves, and vicgree (between 2500 to 3500) in our snapshots. These high-
versa. Figure 4(b) presents the degree distribution of condegree peers are widely visible throughout the overlay,
nections from ultrapeers to leaf peers. Distinct spikes at 30and thus receive a significant portion of exchanged queries
45 and 75 degree are visible. The first two spikes are due tamong other peers. We directly connected to these high de-
the corresponding parameters used in LimeWire and Beagree peers and found they do not actually forward any traf-
Share implementations, respectively. The third spike is dugic’. We removed these inactive high degree peers from our
to a less common implementation. This figure shows that @napshots when considering path lengths since their pres-

significant minority of ultrapeers are connected to less tharnce would artificially improve the apparent connectivity
30 leaf peers, which indicates availability in the system togf the overlay.
accommodate more leaf peers.

In Figure 4((_:), we present the degree of connectivity f0r4.2 Reachability
leaf peers. This result reveals that most leaf peers connect
to three ultrapeers or fewer (the behavior of LimeWire), aThe degree distribution suggests the overlay topology
small fraction of leaves connect to several ultrapeers, and might have a low diameter, given the moderately high de-
few leaves & 0.02%) connect to an extremely large num- gree of most peers. To explore the distances between peers
ber of ultrapeers (100-3000). in more detail, we examine two equally important prop-

Implications of High Degree Peers: We observed a few erties of overlay topologies that express the reachability
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of queries throughout the overlayi) the reachability of same snapshot by presenting the Cumulative Distribution
flood-based queries, arfii) the pairwise distance between Function (CDF) of the number of visited peers from top-
arbitrary pairs of peers. level peers for different TTL values. This figure shows the
Reachability of Flood-Based Query: Figure 6(b) depicts distribution of reachability for flood-based queries among
themeannumber of newly visited peers and its cumulative participating peers. We use a logarithmiscale to mag-
value as a function of TTL, averaged across top-level peersify the left part of the figure for lower TTL values. The
in a single snapshot. The shape of this figure is similar tdigure illustrates two interesting points: First, the total num-
the result that was reported by Lv et al. (Figure 3 in [20]) ber of visited peers using a TTL of is almost always an
which was captured in October 2000, with a significantlyorder of magnitude higher compared to using a TTL of
smaller number of peers (less than 5000). Both results infn — 1). In other words, TTL is the primary determinant
dicate that the number of newly visited peers exponentiallyf the mean number of newly visited peers independent of
grows with increasing TTL up to a certain threshold anda peer’s location. Second, the distribution of newly vis-
has diminishing returns afterwards. This illustrates that théted peers for each TTL is not uniform among all peers.
dramatic growth of network size has been effectively bal-As TTL increases, this distribution becomes more skewed
anced by the introduction of ultrapeers and an increase ifconsidering the logarithmic scale foraxis). This is a di-
node degree. Thus, while the network has changed in mamgct effect of node degree. More specifically, if a peer or
ways, the percentage (but not absolute number) of newlpne of its neighbors has a very high degree, its flood-based
reached peers per TTL has remained relatively stable. Figguery reaches a proportionally larger number of peers.
ure 6(b) also shows the number of newly visited peers prePair-wise Distance: Figure 7(a) shows the distribution of
dicted by the Dynamic Querying formula (assuming a nodeshortest-path lengths in terms of overlay hops among all
degree of 30), which we presented in Section 2.1. This repairs of top-level peers from four snapshots. Ripeanu et
sult indicates that the formula closely predicts the numbeal. [23] presented a similar distribution for the shortest-
of newly visited peers for TTL values less than 5. Beyondpath length based on snapshots that were collected between
5, the query has almost completely saturated the network.November 2000 and June 2001 with 30,000 peers. Com-
Figure 6(c) shows a different angle of reachability for the paring these results reveals two differend@she pairwise



path between peers over the modern Gnutella topolog . GGf?Fl’lh 4Lf7ct_z:1alz . Lgn;igz Cgﬁfgl %-%rgéosvg
. . . . . ew Gnutella . . . . .

is significantly more homogeneous in length, with short_er oid Grutelia | 3302421 366 502 5002
mean valueompared with a few years ago. More specif- ([ vovie Actors | 3.65 599 0.79 0.00027
ically, the old snapshot shows 40% and 50% of all pathg[ Power Grid|  18.7 12.4 0.08 0.005
having a length of 4 and 5 hops whereas our results show|a  C. Elegans|  2.65 2.25 0.28 0.05

surprising 60% of all paths having a length of @i) the
results from our snapshots are nearly identical; whereas
in [23], there is considerable variance from one crawl to an-

other. In summarythe path lengths have become shorter,jay population, an increase in node degree, and changes
more homogeneous, and more stable in overlay structure. The clustering coefficient of a graph,
Effect of Two-Tier Topology: To examine the effect of the Cactual, TEpresents how frequently each node’s neighbors
two-tier overlay topology on path length, we also plot the are also neighbors, and is defined as follows [35]:

path length between all peers (including leaves) in 7(b). If

each leaf had only one ultrapeer, the distribution of path (i) = D(i) > C()
length between leaves would look just like the top-level ' V|
path lengths (Figure 7(a)), but right-shifted by two. How-

ever, since each leaf peer has multiple parents, the patb(l-)’ Dinas(i) and [V| denote the number of edges be-
length distribution between leaves (and thus for all peers),een neighbors of nodé the maximum possible edges
has a more subtle relationship with Figure 7(a). Comparingeyeen neighbors of nodeand the number of vertices in
Figures 7(a) and 7(b) shows us the cost introduced by using,o graph, respectively. For example, if notlaas 3 neigh-

a two-tier overlay. In the top-level, most paths are oflengthbors’ they could have at most 3 edges between them, so
4. Among leaves, we see that around 50% of paths are Olf)mam(A) = 3. If only two of them are connected together,
length 5 and the other 50% are of length 6. Thus, gettingnats one edge and we hai&(4) = 1 andC(A) = %

to and from the top-level overlay introduces an increase ob(i) is not defined for nodes with fewer than 2 neighbors.
1to 2 overlay hops. . Thus, we simply exclude these nodes from the computa-
Eccentricity: The longest observed path in these fourjgn of Clctuar. Table 3 presents ranges for the clustering
snapshots was 12 hops, however the vast majority (99.5%)yefficient Cuctuar) and mean path lengttf.s..q:) for the

of paths have a length of 5 hops or less. To further exgnytella snapshots from Table 1 as well as the mean values
plore the longest paths in the topology, we examined thgrom four random graphs with the same number of vertices
distribution of eccentricity in the top-level overlay. The ec- 5ng edgesi€. Crandom aNd Lrandom). Because comput-
centricity of a peer is the distance from that peer to theIng the true mean path length,{,qom) iS COMputation-
most distant other peer. More formally, given the func-a”y expensive for large graphs, we used the mean of 500
tion P(i, j) that returns tho _shortest path d_istanoe betweeRample paths selected uniformly at random. We also in-
nodesi andj, the eccentricity; of nodei is defined as  ¢yde the information presented by Jovanovic et al. [12]
follows: E; = max(P(i,j), Vj). Figure 7(c) shows the and three classic small world graphs [35].

distribution of eccentricity in four topology snapshots. This  p graph is loosely identified as a small world when its
figure shows that the distribution of eccentricity is ratherjean path length is close to random graphs with the same
homogeneous and low which is an indication that the overn mber of edge and vertices, but its clustering coefficient is
lay graphis a relatively balanced and well-connected meshy qers of magnitude larger than the corresponding random

Table 3: Small World Characteristics

Cactual =

rather than a chain of multiple groups of peers. graph (.. Lactuar N0 Lyandom are close, buCyeruar is
orders of magnitude larger théf}. .40, )- All three classic
4.3 Small World small world graphs in the table exhibit variants of these

conditions. Snapshots of modern Gnutella clearly satisfy
Recent studies have shown that many biological and marthese conditions which means that modern Gnutella still
made graphsa(g, collaborations among actors, the electri- exhibits small world properties.
cal grid, and the WWW graph) exhibit “small world” prop-  Comparing the clustering coefficient between modern
erties. In these graphs, the mean pairwise distance betwe@&nutella and old Gnutella shows that modern Gnutella has
nodes is small and nodes are highly clustered compared tess clustering. A plausible explanation is the increased
random graphs with the same number of vertices and edgesize, which provides the opportunity for more diverse con-
A study by Jovanovic et al. [12] in November—-Decembernectivity to other peers. A high clustering coefficient im-
2000 concluded that the Gnutella network exhibits smallplies a larger fraction of redundant messages in flood-based
world properties as well. Our goal is to verify to what querying. The observed clustering could be a result of fac-
extent recent top-level topologies of the Gnutella networktors like peer bootstrapping, the peer discovery mechanism,
still exhibit small world properties despite growth in over- and overlay dynamics. Further analysis is needed to better
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Precentage of nodes removed routed differently or even dropped as a result of changes in

the edges of the overlay. To our knowledge, aggregate dy-
Figure 8: Fraction of remaining nodes in the largest confhamics of unstructured P2P overlay have not been studied.
nected component as a function of the percentage of origFhere are two basic causes for observed dynamics in the
inal nodes removed for the 9/27, 10/11, and 10/18 snapeverlay topology as follows:
shots. The top (overlapped) lines and the bottom three lines

present random and pathological node removal scenarios, ® Dynamics of Peer Participation: When a peer joins (or
respectively. departs) the network, it establishes (or tears down) its

connections to other participating peers in the overlay.
Therefore, these changes in overlay edgesuses-
understand the underlying causes. Section 5 shows how driverf.

peer churn is one factor that contributes to clustering. ) ) ) o
e Dynamics of Neighbor Selection: Two existing peers

. in the overlay may establish a new (or tear down an
4.4 Resilience existing) connection between them. Such a change in
edges is not triggered by users and thus considered

We also examine the resilience in different snapshots of the :
protocol-driven

Gnutella overlay topology using two different types of node
removal: (i) random removal, andii) pathologically re-
moving the highest-degree nodes first. An early study [24]ar

conducted the same analysis on Gnutella based on a PaGrent P2P applications [31, 28]. Therefore, characteriza-

tial topology snapshot, finding that the overlay is resilient,. . T .
. tion of user-driven dynamics in the overlay provides a use-
to random departures, but under pathological node remov;;rll

quickly becomes very fragmented (after removing just 4%“' insight for design of other Gnutella-like unstructured
of nodes) P2P overlays.

. . . - . In this section, we characterize the dynamics of the Gnu-
Figure 8 depicts the fraction of remaining nodes in thetella network. More specifically, we want to investigéle
topology which remain still connected in both the random ' P Y, g

and pathological node removaThis figure clearly shows whether a subset of participating peers form a relatively

. stable core for the overlay, (ii) what properties (such as
the Gnutella overlay is not only extremely robust to random_. . L . :
size, diameter, degree of connectivity or clustering) this sta-

peer removals, but it also exhibits high resilience to patho—Iole core exhibits, and (jii) what underlying factors con-

logical node removal Even after removing 85% of peers _ . : :
. . tribute to the formation and properties of such a stable
randomly, 90% of the remaining nodes are still connected,

. . 0 core.

For the pathological case, after removing the 50% of peery, ethodology: Our main goal is to determine whether ob-

with the highest-degree, 75% of the remaining nodes re- L .
: : . —served dynamicsi.g., the rate of change in the edges of

main connected. There are two possible factors contribut;

ing to this difference with earlier results [24]) the higher he overlay) are different at various regions of the overlay.

median node degree of most nodes in modern Gnutella, a We primarily focus on the top-level overlay in our analysis,
9 ’ rbecause leaf nodes do not forward traffic and therefore do

(i) a non-negligible number of missing nodes and edges irﬁot rovide meaningful connectivity between peers. One
the partial snapshot of the earlier study. Our result implie b g Y P !

) . §<ey issue is to define a core region for the “spaghetti-like”
that complex overlay construction algorithnesd, [36]) . : .
. . overlay. We use the following methodology to identify and
are not always a necessary prerequisite for ensuring re-, . X
" . characterize any potentially stable core for the overlay. In-
silience in unstructured overlays. o . . .
tuitively, if the overlay has a stable core, it must contain the
long-lived peers of the overlay. Therefore, to identify the
5 Overlay Dynamics stable core of the overlay at any point of time, we select
the subset of participating peers who have been part of the
In Section 4, we characterized the graph-related propertiesverlay for at least minutes,i.e., all peers whose uptime

of individual snapshots of the overlay topology. However,is longer than a threshold We call this subset of peers

Note that the user-driven dynamics of peer participation
e likely to exhibit similar heavy-tailed distributions in dif-
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Figure 10: Different angles of connectivity with the stable core

the stable peersor SP(7), and only focus on this subset time scales. Furthermore, this also implies that the total
in our analysis. However, by changing we can control number of possible connections withitP (7) dramatically
the minimum uptime of selected peers and thus the relativdecreases with.

stability and size ob'P(r). Internal Connectivity Within the Stable Core: To study

To conduct this analysis, we use several slices of oudifferent angles of connectivity among ultrapeers within
dataset where each slice is a period of 48 hours of conSP(7), we focus only on the connections of the overlay
tinuous back-to-back topology snapshots, with hundreds oivhere both end points are insidé (), i.e., we remove all
snapshots per slice. Let's consider the last captured snapdges to peers outsid& (7). We call this the stable core
shot over each 48 hour period as a reference snapshot. Amyerlay orSC(7). The first question iswhetherSC(r) is
peer in the reference snapshot must have joined the overldylly connectedFigure 10(a) depicts the fraction of ultra-
either before or during our measurement period. By lookpeers withinSC(7) that are in the largest connected com-
ing back through the snapshots, we can determine (witponent, as a function of. This figure clearly demonstrates
accuracy of a few minutes) the arrival time of all peersthat while the fraction of connected peers slightly decreases
that joined during the measurement period. For those peessith 7 over long times scales, a significant majority (86%—
that were present for the entire measurement period, w84%) of peers withil5C(7) remain fully connected. The
can conclude that their uptime is at least 48 hours. Havminor drop in the percentage of connected peers is due to
ing this information, we can annotate all peers in the ref-exponential decrease in nhumber of peers withifi(7),
erence snapshot with their uptime information. Figure 9(awhich in turn reduces the number of edges among peers,
depicts the CCDF of uptime among existing peers in theand thus affects the opportunity for pairwise connectivity.
reference snapshot for several slices (Figure 9(b) presenfthe second question iepw clustered and dense is the con-
the initial part of the same graph). In essence, this fignhected portion of the core overlayrgure 10(b) shows the
ure presents the distribution of uptime among participatingdiameter and characteristic (mean) path length among fully
peers in steady state, implying that the siz&&f(r) expo-  connected peers in the stable core overlay. Interestingly,
nentially decreases with This is more visible over longer both the mean path length and the diameter of the stable



core overlay remain relatively stableascreases, despite the core do not depend on peers outside the core for reach-
the dramatic drop in number of edges. Furthermore, thability. In other words, the core overlay provides a stable
mean path length for the stable core overlay, even when ind efficient backbone for the entire top-level overlay that
has a very small population (only 10% of top-level peersensures connectivity among all participating peers despite
for 7=45h), is around 5 hops, very close to the mean patlthe high rate of dynamics among peers outside the core.
length for the entire top-level overlay (4.17-4.23 from the
first row of Table 3). Finally, Figure 10(c) depicts the evo- .. .
lution of the clustering coefficient for the stable core 0ver-5':L Examining Underlying Causes

lay asT increases, along with the clustering coefficient for 5 key question is:how does this onion-like layered con-
the entire top-level overlay in the reference snapshot. Thiﬁectivity form in the overlay in an unintentional and un-
figure shows two important pointg) peers within the sta- ¢qordinated fashion?To address this issue, we quantify
ble core overlay are more clustered togethgr than thp entirge contribution of user-driven and protocol-driven dynam-
top-level overlay on average, and, more importanly,  jcs in changes of the edges of the overlay. We can distin-
connectivity among peers within the stable core overlay begish protocol-driven versus user-driven changes in edges
comes increasingly more clustered withThis latter point - petween two snapshots of the overlay as follows: if at least
implies thatthe longer a peer remains in the overlay, the one of the endpoints for a changing edge has arrived (or de-
more likely it establishes connections to peers with equabarted) between two snapshots, that change is user-driven.
or higher uptimesi.e., the more biased its connectivity be- gtherwise, a changing edge is considered protocol-driven.
comes toward peers with higher uptime. Since connectiong, gnswer the above question, we examine a 48-hour slice
for all participating peers exhibit the same behavior, con- 4t yack-to-back snapshots from 10/14/2004 to 10/16/2004,
nectivity of the overlay exhibits a biased “onion-like” lay- using the first snapshot as a reference. Given a slice, we
ering where peers with similar uptime (a layer) have a ten-cap detect new or missing edges in any snapshot compared
dency to be connected to peers with the same or highey, the reference snapshot, for peers in both snapshots. Let
uptime (internal layers of the onion). Since the size of 5, andé,_ (6, andé,) denote the normalized ratio
SP(7) decreases with, this means that internal layers are ¢ missing (and new) edges in a snapshot due to protocol-
both smaller and more clustered. driven (p) and user-driven (u) causes, normalized by the
External Connectivity to/from the Stable Core: To  hmper of edges in the reference snapshot. Figure 11(a)
quantify the connectivity betweefC'(7) apd therestofthe 5,4 11(b) depic_=6,_+6, andd, =4, +d,. for back-
overlay we examined whether peers witliit’(7) have @ to_pack snapshots for the slice under investigation. Each
higher tendency to connect to each other rather than peefgyre also depicts the breakdown of changes in edges into
outside the core. To quantify any potential tendency, W&o groups: protocol-driven and user-driven changes. Note
calculate the ratio of internal edges to the total number thatép ands,, are by definition cumulative. The left graph
edges and compare that with the same ratio for a randoml(,g_) shows that around 20% and 30% of edges in the over-
generated graph with the same number of nodes, same dgy are removed due to protocol-driven and user-driven fac-
gree distribution among nodes, and same number of edgegys quring the first 100 minutes, respectively. After this pe-
For a fair comparison, we present the notion iedf €dge  (iog, aimost all removed edges are due to departing peers.
for a graph as follows: we cut the edd®; between two  gimilarly, from the right graph, many edges are added dur-
nodesi andj, and definet alf Edge(i, j) as the half of jnq the first 100 minutes due to both protocol-driven fac-

E;; thatis connected to node Then, the ratio of internal 4,5 and the arrival of new peers. After this period, almost
to total half-edges can be calculated as follows:

Ziesc Zjesc HalfEdge(i,j)

R= > iese Za”j HalfEdge(i,j) 100 100 —
. . . o 80 - o 80 -
Figure 9(c) depict§ R, — R,)/R, as a function ofr g g

where R, and R, denote the value oR for several snap- & 60 7 g 60 7
shots and their corresponding randomly generated graphs @ 40 7 5 40 7
respectively. This figure demonstrates that the longerapeer 20 H /£ 20 - /;
remains in the network, its connectivity becomes more bi- 0 _ﬁ_] 0 4
ased towards peers with the same or higher uptime. This 0 200 400 0 200 400
is another evidence that peers exhibit an onion-like biased Time since beginning of window (minutes)
connectivity and the degree of such bias increases with up- (a) Removed edges (b) Added edges

time.
Implications of Stable and Layered Core Overlay: The  Figure 11: Contribution of user- and protocol-driven dy-
connectivity of the core overlay implies that all peers within Namics in variations of edges in the overlay



all new edges involve a newly arriving peer. These resultsuggested graph analysis in these studies to the Gnutella
shows two important points: First, each peer may establistoverlay topology.
and tear down many connections to other peers during the
initial 100 minutes of its uptime. But peers with higher up- .
time (.e., peers insidesC(7) for 7 > 100 min), maintain  / Conclusions
their connections to their remaining long-lived neighbors, ) ) ] )
and only add (or drop) connections to arriving (or depart-'n this paper, using Gnutella, we presented the first detailed
ing) peers. This behavior appears to explain the formatioigharacterization of an unstructured two-tier overlay topol-
of the biased onion-like layering in connectivity within the ©9Y that is typical of modern popular P2P systems, based
overlay. Second, user-driven dynamics are the dominarfi accurate and complete snapshots. We described fun-
factor in long-term changes of the overlay. Since dynamicélamental challenges in capturing accurate snapshots, and
of peer participations exhibit similar dynamics in different démonstrated that inaccurate snapshots can lead to erro-
P2P systems [31], other Gnutella-like overlays are likely to"€0US conclusions—such as a power-law degree distribu-
show similar behavior. We plan to conduct further investi-tion. We characterized the graph-related properties of in-
gations to better understand the underlying dynamics thaiividual snapshots, the dynamics of the overlay topology
contribute to this behavior. across different time scales, and investigated the underly-
ing causes and implications. Our main findings are sum-
marized in Section 1.1.
6 Related Work This study developed essential insights into the behav-
Al troughout i papeter are a andll of rf, o1 DRSS MEH e esessn o e
§tud|es on chara_cterlzmg peer-to-peer overlay topolqgle3| lications. The existence of a stable well-connected core
file-sharing applications [23, 2 20, 12]'. These studies ar f long-lived peers suggests that there may be benefits in
more than three years old, did not verify the accuracy o erms of increasing search resilience in the face ofd the

their captured snapshots, and conducted only limited ana-Verlay dynamics, by biasing/directing the search towards

ysis. A recent study [18] used both passive measurem_e%nger lived peers and therefore towards this core. It may

and active probing of 900 super nodes to study behavio Iso be useful to cache indexes or content at long-lived

of the Kaaza overlay. They have mostly focused on thepeers in order to reduce load on the stable core, especially if

number of observed connections (within the top-level OVerip o piased forwarding of queries is adopted. For example,

lay an_d from th_e top-level overlay to leaf nodes) a_md the'rthe idea of one-hop replication [21], intended for power-
evolution with time. However they have not examined de-

. i .~ law topologies, can be changed to a probabilistic one-ho
tailed graph-related properties of the overlay, or collective polog g b P

) . _ replication biased towards peers with longer uptime.
dynamics of the entire overlay topology, both of which are . . _
. . S We are continuing this work along a number of direc-
investigated in this paper.

There has been a wealth of measurement research ct)'r?ns' We are actively monitoring the Gnutella network

other properties of peer-to-peer systems. These studieasnd plan to further examine the dynamics of peer partic-

cover several topics(i) file characteristics [6, 17, 3, 19], Ipation over short time scales, explore any Ior_1ger term
- i trends in the topology, and observe variations in several
(i) transfer characteristics [10, 17(ijii) peer character- key propertiesd.g, small-world coefficient, degree distri-
istics [25, 24], (vi) query characteristics [26, 3, 16, 4], y prop 9, » d€g

and(v) comparisons of different implementations [15, 11]. bution, and mean pairwise distance) with time. We are ap-
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