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Abstract— During recent years, Distributed Hash Tables (DHTs) a lookup may take more than the ideal number of hops or map
have been extensively studied through simulation and analysis. to the wrong peer.

However, due to their limited deployment, it has not been possible There are two classes of solutions to cope with the effect
to observe the behavior of a widely-deployed DHT in practice.

Recently, the popular eMule file-sharing software incorporated a Of churn on DHTs: (i) DHT-based DHTs can incorporate

Kademlia-based DHT, called Kad, which currently has around Various techniques to actively improve their resiliency to churn

one million simultaneous users. by increasing the degree of redundancy or the frequency of
In this paper, we empirically study the performance of the pdates for the routing table at each pd@). Client-based

key DHT operation, lookup, over Kad. First, we analytically : : : :
derive the benefits of different ways to increase the richness of Alternatively, a client operating over an inaccurate DHT can

routing tables in Kademlia-based DHTs. Second, we empirically IMProve its lookup efficiency by conducting lookup in parallel
characterize two aspects of the accuracy of routing tables in Kad, and cope with lookup inconsistencies by active replication of
namely completeness and freshness, and characterize their impactcontent.
g?fic}?:r?és gﬁg“goﬁgggma”g?I('):ci)'ll?'y’inweK;gV‘zztri]g%t: ir;?\,\:o:/ged Previous studies have examined both DHT-based [10], [11]
by perfo?/ming parallel |00|(){Jp and ma?ntaining multiple repI[i)cas, and client-based [4], [5] solutions as well as the_ |nteract|9ns
respectively. Our results pinpoint the best operating point for the and trade-offs between them [7]. All of the previous studies
degree of lookup parallelism and the degree of replication for have used either simulation, analysis, or small-scale experi-
Kad. ments to study these issues. However the dynamics of user
participation and their impact on routing table accuracy are
not well understood. Given the limited understanding of churn
Distributed Hash Tables (DHTs) present an elegant digharacteristics, it is unclear how well simulation-based analysis
tributed solution for deterministically mapping items to locaof DHTSs represents real-world behavior. Section VII discusses
tions. They provide atructuredapproach to Peer-to-Peer (P2P)he related work in more detail.
applications since their item-to-location mapping can be usedThijs paper presents a measurement-based characterization of
to (i) publish an item on a specific peer a9 efficiently routing table inaccuracy and its impact on lookup performance
lookup an item by locating its corresponding peer. During, g widely-deployed DHT, namelyKad. Kad is an open,
the past few years, the potential of DHTs has motivated i&demlia-based [4] DHT with more than 1 million concurrent
wealth of research including the design of new DHTs [llgsers that has been recently deployed by the popular éMule
[5], performance evaluation and improvements [6], [7], anfle-sharing application to improve efficiency of search in the
the development of a wide range of DHT-based distributegce of a growing user population. Section Il presents an
applications [8], [9]. Despite a great deal of attention from thgserview of Kademlia and Kad.
resgarch community, DHTs have not become widely-deployedry study the inaccuracy of routing tables in a DHT, in
until recently. In the absence of any large scale deployment, 8lction 111, we first establish an analytical framework to quan-
previous studies on DHTSs rely only on simulation, theoreticgfy the effect of routing table richness on the performance of
analysis, and limited-scale experiments. Therefore, the behayi¥kup. To our knowledge, this is the first analysis to show
of DHTs in practice has not been examined and thus is not wglht Kademlia’s k-buckets improve lookup performance. In
understood. Section IV, we turn our attention to the accuracy of Kad's
In practice, the dynamics of peer participation, @um  royting tables. Towards this end, we characterize both the
can affect the accuracy of routing tables at each peer, afgshness and completeness of routing tables in Kad through
thus the performance of lookup operations in @ DHT. Mofgetailed and representative measurements using a tool we
specifically, some entries in the routing table of individual peegyeloped calleckFetch To explain the observed behavior,

might be missing or stale. Therefore, each peer does not hgye carefully examined eMule’s source code and present the
the expected connectivity to other peers. The inaccuracy of

routing tables_ in turn affects the_ ef_flqlency ‘F_md consistency Ofigyye began as an open-source alternative for the eDonkey unstructured
lookup operations conducted by individual clients. For examplestwork.

|I. INTRODUCTION
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underlying policies for routing table updates and redunganto have a route where the high-ordebits match. The route
management. Next, we turn our attention to different clienpoints to another peer, which is consulted in the next step and
based techniques to improve lookup efficiency and consistensyguaranteed to have a route where the fitsbits match. The
over Kad despite the inaccuracy of routing tables. Since we gm®cess continues until no next route can be found, indicating
dealing with a deployed DHT system, we are unable to explatteat the closest peer to the ID has been reached. We can view
DHT-based solutions. the distance between two identifiers as the number of bits that
In Section V, we examine two classes of parallel lookumust be matched to reach from one to the other. For a network
techniques to improve lookup efficiency over Kad. Toward thisf n peers, most peers will be arounes, n bits apart, and
end we developed a new tool callklookup which emulates the expected number of steps to perform a Iookulé%sﬁ. We
a lookup fromany source ID toany destination ID without call b the symbol sizeand in basic Kademlia = 1. Section Ill
requiring local access to the designated peers for these IBsamines the impact of different choices fan lookup latency
Furthermore, leveraging the iterative lookup scheme in Kain hops) and route table size.
kLookup enables us to empirically examine different parallel As IP is also a prefix-matching protocol, we borrow some
lookup techniques and identify major design trade-offs. Finalligrminology from IP to describe Kademlia routing tables. Each
in Section VI we characterize the frequency of inconsistertute in a Kademlia routing table is labeled withsabnet
lookup results in Kad. We then explore how the degree afidressand mask When performing a lookup for a key, the
replication improves lookup consistency. most-specific routing table entry with a matching subnet is used,
Our main contributions can be summarized as follows: just as in IP routing. In this paper, the familiar “slash-notation”

« Analytical Framework : We develop an analytical frame-SPecifies the number of bits in the masle( /3" means an ID
work for computing the average performance of lookug8Ust match the highest-order 3 bits of the subnet address). In
for prefix-matching DHTs. This lead to the surprising rekademlia, the routing table is structured to contain one route
sult that redundancy in routing tables, such as Kademli@®§" address bit, with increasingly specific masks. The subnet
k-buckets, directly improves mean lookup performance @ﬂdresses are the same as the ID of the peer hosting the routing
reducing hop count table. The routing table structure can be viewed as a binary tree,

« New Tools (i) kFetch, a tool for extracting the routing@S shown in Figure 1(a). For example, consider a Kademlia
table from Kad peersg(ji) kLookup, a parameterized toolN€twork using 4-bit identifiefsand a particular peer with the
for performing lookups over Kad using a variety of lookugtddress 0000. There are route table entries for the following
algorithms address—mask pairs: 0000/0, 0000/1, 0000/2, 0000/3, 0000/4.

« Empirical Findings: (i) Validating the predictions of our Becguse more—sp_ecific routes are p_referred, the routing tgble
analytical framework(ii) Locating the sweet spot for the€ntries are effectively for the following address—mask pairs:
degree of lookup parallelism to improve lookup efficiencyt000/1, 0100/2, 0010/3, 0001/4, 0000/4. In other words, the
(iii) Locating the sweet spot for the degree of replicatiof000/0 line will only contain 1000/1 addresses since any 0000/1
to overcome routing table inconsistencies address would map to one of the more specific entries.

The routing tables in all the Kademlia peers collectively

While this study is centered around Kad, our analysi . : . :
. o . fdrm one large binary tree, with each peer containing a fraction
methodologies, tools and findings are mostly applicable 10 logn

other DHTs with proper adjustment. To address the widé@( n ))Of it. During a lookup, each routing step pivots to a
applicability of our work, we briefly discuss how some issuedifferent peer which is one bit closer to the target, guaranteeing
can be pursued in the context of other DHTs. Our extensiiat the lookup requires at mot(logn) steps.

examination of eMule’s source code also revealed several bugd;0r redundancy purposes, each routing table entry (or node in

some of which were fixed in the next revision. the binary tree) contains a list, called:ébucket, ofk matching
contacts. Each contact includes the Kademlia ID, IP address,
[l. BACKGROUND and port of the remote peer. Thus, each lookup step has a choice

{ k different contacts for the next step. Section Il examines

We first present some background on Kademlia, since 9 , -
me of the consequences for choosing different valugs of

forms the basis for the Kad network that we use for o .
empirical study. Like most DHTSs, peers in Kademlia each ha e note thak-buckets could be adapted for use in other types
an identifier that is assigned either uniformly at random or v DI—(;T af_ well.k ‘ el . d up look

a cryptographic hash. To determine the distance between twdcademlia makes use of parallel routing to speed up lookups,

peers, Kademlia uses a unique “XOR metric”, the bitwise xof® do EpiChord [13] .and Accordion [5]' Issuiing lookup .
of their identifiers. For example, the distance betweéki0 and requests at a time avoids long waits while departed peers time
0111 is 0011 (or 3) ' out and also increase the probability of finding low-latency

Kademlia belongs to the general class of prefix—matchir?geers' Se<_:t|on v examines using different value_aonﬁ_ Kad.
DHTSs, such as Pastry [3] and Tapestry [12]. At the high-level Kademlia uses iterative routing, where the client is respon-
these,DHTs work in the same way. lokup consists of a sible for the entire lookup process. At each step, the client

Se_quence ObOKUp stepgor hops). The first _Step_ consults the 2, practice no DHT would use such a small identifier space, but it's more
client’s routing table for the target ID, which is guaranteethctable for illustrative purposes.



sends alookup requesto the next-hop peer and waits for a Every DHT has some structure that determines a peer's
lookup reply The reply lets the client know what the nexpotential neighbors based on identifiers. For example, in basic
hop is. Iterative routing contrasts with recursive routing, whekéademlia a peer must have a neighbor with a different high-
the lookup request is forwarded automatically from one peerder ID bit, a neighbor with a matching first bit and a different

to another. While it has been shown that recursive routirsgcond bit, a neighbor with the first two bits matching and
typically has lower latency [14], iterative routing has severa different third bit, etc. We call each address—mask pair
useful practical properties: a bucket (following the Kademlia terminology) where each

Fate-Sharing Lookup messages cannot be lost due to tHaicket contains address information, calbeditacts for several
departure Of an intermediate peer ho|d|ng the |ook ighborS. A bucket W|t”€ contacts iS Ca”ed &-bucket. In
request [15]. the base case, a DHT only contains enough information to

Debugging Iterative routing is easier to debug since inPerform the lookup irlog, n steps. In prefix-matching DHTs
formation at each step is reported back to the clieftiCh Kademlia, this implies a symbol size lof= 1 and one
performing the lookup. contact per bucket. In general, the expected number of steps

Compartmentalization: Iterative routing decouples routefequired to perform a lookup is given as follows:
table maintenance and lookup technique, allowing them log, n
to be studied and improved independently in a deployed steps per lookup: bits improved per step 1)
network. Our tool, kLookup, uses this division to evaluate
a variety of lookup techniques directly over the existin
Kad network, as shown in Sections V and VI.

Route Table Extraction: Iterative routing allows us to
download the entire routing table of any peer. We make u

A DHT can enrich the routing table structure beyond this
Hase case by either &dding more bucketsr 2) adding more
contacts per bucketBy adding more buckets, a DHT can
uarantee that a larger number of bits will be improved at each
of this feature in our tool, kFetch, described in Section | éie;r;];?ee’rit;it?ﬁ;isslzg ?zer}:lrﬂfl g/rﬁgglogisz;o;& Ivc\)lcr)]lréjhp. For
B. guarantees 4 bits will be improved at each step. Tables in Chord
In summary, the key properties of Kademlia (and thus Kaghn also be enriched in this way [7].
are as follows(i) routing by prefix-matching(ii) redundancy  Adding more contacts per bucket is used to guard against
in routing tables K-buckets), (i) parallel routing, and(iv) churn, an approach employed by DHTs such as Kademlia [4]
iterative routing. Redundancy, parallel routing, and iterativgnd Tapestry [12]. By having other contacts handy, a peer
routing could be incorporated into most varieties of DHT. Fafan more quickly repair its routing table when a failure is
example, EpiChord is a variant of Chord with parallel routingjetected. Furthermore, as observed in [4], with heavy-tailed
Prefix-matching is an intrinsic property of Kademlia's desigrsession times, storing backups and only evicting unresponsive
which it shares with a number of other DHTs such as PaSTr_IjEers |mp||c|t|y leads to a set of peers with good uptime
and Tapestry. characteristics. Finally, multiple contacts per route allow for
Kad is a Kademlia-based DHT network for file-sharingthe use of parallel routing.
composed of eMule clients. While Kad is based on Kademlia, To examine the benefits and costs of the above two ap-
Kad uses a slightly different routing table structure, describggloaches for enriching routing tables, we analyze their impact
in detail in Section Ill. Kad has approximately 1 millionin the context of Kademlia. Our analysis also directly applies
simultaneous users, plus many more firewalled peers Wpother prefix-matching systems such as Pastry and Tapestry,
utilize the Kad DHT for lookups but do not participate in thevhere we can quantify the improvement at each step in terms
DHT structure. For each file an eMule client shares, the cliegt the number of matching bits. For other DHTs that use
computes the hash of each word in the filename, and publisheslifferent basic geometry, our analysis could be adapted
information about itself and the file to the peers responsibdg/ modifying the formulas to reflect the appropriate distance
for the hashes. When an eMule user enters a keyword seafgtric.
eMule computes the hash of the first keyword and initiates aThere are two different approaches for adding more buckets
lookup for the hash. The lookup returns a set of endpoirtisa routing table, both of which improve the number of lookup
to which the client submits the full keyword list. Those peefisops fromlog, n to log,s n:
process the query and return a set of matching results. « Discrete Symbols With this approach, illustrated in Fig-
ure 1(b), each interior node points26— 1 buckets and an
additional interior node. When searching a routing table, a
In this section, we first establish an analytical framework peer begins by checking the fifsbits. If all of them match
to examine the effect on lookup performance of adding extra the peer’s ID, then it proceeds to the néxbits (.e., the
contacts to routing tables. We derive a formula for computing next interior node). Otherwise, it proceeds immediately to
the typical number of hops needed to perform a lookup as a the appropriate bucket. Using Discrete Symbols increases
function of the way the extra contacts are structured, and use the routing table size frontog, n rows of onek-bucket
the formula to explore trade-offs between different methods for  each tolog,. n rows of 2° — 1 k-buckets each. This is the
increasing the richness of routing tables. approach used in Kademlia and Pastry.

IIl. ANALYSIS OF KADEMLIA'S k-BUCKETS
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Fig. 1. Routing Table Structures

« Split Symbols: With this approach, illustrated in Fig- Therefore, the average-case is better than the worst-case
ure 1(c), each interior node points 26! buckets and an given in prior work. In particular, the key insight is that large
additional interior node. When searching a routing tableuckets g > 1) improve the probability ofandomlyfinding a
a peer begins by checking the first single bit. If it matchesontact with more matching bits since there are more options to
the peer’s ID, then it proceeds to the next hig(the next choose from. As we will show, the average number of improved
interior node). Otherwise, it examines the néxiits and bits increases logarithmically with, making the performance
proceeds to the appropriate bucket. Using Split Symbdisost of increasing: comparable to the performance boost
increases the routing table size fog, n rows of onek- of increasingb. Generally, for ak-bucket the probability of
bucket each tdog, n rows of 2°~! k-buckets each. This improving by at least extra symbols is:
is the approach used in Kad. &

To compare and contrast these approaches for organizing F(6,rk)=Pr[X >6=1- <1 _ %) (3)

routing table contacts, we create a general framework for 2

analyzing their performance. We defif¥b, r, k) as a system and the probability of improvingxactlys symbols is:

which usesh-bit symbols withr-bit resolution andk-buckets.

D(1,1,k) is the basic Kademlia approact®(b,b, k) is the f(o,r k) = PriX = 6] = F(6,r,k) = F(0 + 1,1 k) (4)
Discrete Symbol approach, ar@(b, 1, k) is the Split Symbol  The key question ishow many additional bits improve on
approach used in Kad. Each routing table hag. n rows of ayerage due to randomnesSince we know the probability
2" — 2"~" k-buckets, for a total size of(2" — 2"~")log,-n  of improving exactlys additional symbols (4, 7, k)), we can
contacts. Normalizing by a factor &g, n yields a normalized compute average number of extra bits improved by finding the

. b__ob—r
size of k2—2—. . ~ average value of and multiplying by the number of bits per
Most prior work on most DHTSis concerned exclusively symbol ¢) as follows:

with the worst-case scenario where the selected contact will not -
match anyadditionalbits of the target identifier. For example, oy ir4 pits improved per stepa(r, k) = rZé-f(5 rk) (5)
consider searching for the key 111 in the routing table of peer ’ o
000 with the basé = 1 system. The peer looks in the bucket

with the prefix 1, and returns a contact which we know matches
the first bit of the key. However, that contact could be any of the

peers 100, 101, 110, or 111. In other words, therejschance  Note thatm(r, k) is actually decreasing in due to ther
of improving at least 1 extra bit, 3 chance of improving at term in Formula 3. While we were unable to find a simple
least 2 extra bits, and so on. More precisely, the probability efosed form form(r, k), it can be computed numerically with-

6=0

total bits improved per step(b, 7, k) = b+ m(r, k)  (6)

improving at least bits is: out difficulty. Forr = 1, m(1,k) asymptotically approaches
Pr(X >8] = 1 @) log, k + 0.3327, somewhat exceeding this value for lower
= Significantly, for the base cas®(1,1,1) of no additional

3To our knowledge, the only work on DHTs which has considered th_réOUtlng table entrlesm(l, 1) =1 |ndlcat|ng one extra bit

average-case performance is Chord [1]. improves per step. In other words, a bas¥l, 1,1) system
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Fig. 2. Relative performance of different routing table structures

on average performs a lookup ralf as many hopas reported by using a mixture of large buckets and large symbdise

by previous work. short answer is “No”. Figures 2(b) and 2(c) plot several other
For a Discrete Symbol configuratio®(b, b, k), the number permutations ofD(b, r, k). Figure 2(b) holdsk constant and

of bits improved on average i + m(b,k). For a Split variesb, while Figure 2(c) hold$ constant and variek. For

Symbol configurationD(b, 1, k), the number of bits improved small values of; (e.g.,2) with varyingb, both Discrete Symbols

on average i9 + m(1, k). While the Split Symbol approachand Split Symbols have performance in between their regular

does use more routing table space, it has the advantage thapérformance and(1, 1, k). For moderate value®(.,20) of

can leverage a random improvement of a single extraTiie £k, the performance of Split Symbols is virtually identical to

Discrete Symbol approach must randomly improvebbgxtra D(1, 1, k), while the performance of Discrete Symbols plum-

bits at a time to make use of random improvements. mets (as seen in Figure 2(b)). Because Discrete Symbols cannot
To compare the different approaches, first consider theake good use of randomness, theedundancy imposes a cost

three extreme case®(1, 1, k) (pure Redundancy)P(b,b,1) with little benefit on lookup performance.

(pure Discrete Symbols), ari#(b, 1,1) (pure Split Symbols).  In summary, increasing the symbol size offers a constant-

Figure 2(a) presents the performance of each approach afaaor improvement to worst-case performance, while uging

function of the normalized routing table size. Split Symbols artslickets offers comparable average-case improvement. More-

Redundancy have nearly identical performance, while Discreieer, k-buckets offer other advantages as follows:

Symbols performs slightly better. For the case of Split Symbols, reduced implementation complexity

(D(b,1,1)), the b-bit symbols guarantee an improvementbof | | gyer maintenance bandwidth: fewer restrictions on ac-

bits in the worst case, plus an additional(1,1) = 1 bits ceptable contacts allows for more contacts to be acquired
on average, for a total of exactly+ 1 bits, dividing by the passively

. . . b . . .
normalized size yieldsj;=;. This is the slope of the Split , Better resistance to churn by accumulating high-quality
Symbols P(b, 1,1)) line in Figure 2(a). contacts

For the case of Discrete Symbol®(,b,1)), the b-bit
symbols again guarantee an improvemernt bfts in the worst
case, plus an additionah(r,1) bits on average. However,

While our framework is motivated by our study of Kad, it
applies to any prefix-matching DHT and could be extended to
mi(r, 1) asymptotically approachsfor larger. As a point of olther DHTs that can accommodate d_ifferent s_ymbol or bucket

’ sizes, such as Chord. In the following section, we use the

reference, for Pastry’s typical value bf= r = 4, the average
. . . > formulas we have developed to compute a lower bound on the
improvement is 4.27 bits per step, roughly a 4% reduction In

the mean number of lookup hdpsompared to that reportedaverage !ookup hops_in Kad and empirically examine how close
by the Pastry authors [3]. The average improvement divided BW predicted model is to the actual performance.
the normalized size il

For the case of large buckets and 1-bit symb@s$1( 1, k)),
the 1-bit symbols guarantee an improvementiobit in the  In this section, we empirically characterize the degree of
worst case, plus an additional(1, k) bits on average, for a fouting table accuracy in Kad and identify the underlying
total of 1 4+ m(1, k). Dividing by the normalized size resultsreasons for inaccuracies. These characteristics help us explain
in HWT(W) As a point of reference, for the value &f= 20 the observed lookup performance in Section V. Our goal is
suggested in the Kademlia paper [4], the average improvemEhtexplore the structure and redundandg.( b and k) of
is 5.7 bits per step rather than 1 bit per step, resulting in a 6694ting tables in Kad by examining the eMule source Cpde
reduction in the mean number of hops! and then empirically studying the impact of churn on routing

An important question isCan performance be improvedtable accuracy.

IV. ACCURACY OFROUTING TABLES IN KAD

4The expected number of hops is equallég,; n where B is the average  SThere is no written specification that describes the Kad protocol so our
number of bits of improvement. explanations are based on our reading of the source code.



A. Predicting Kad Performance B. kFetch

Close examination of the eMule 0.46a source code revealsto study the accuracy of routing tables, we developed a
that Kad is based on Kademlia with a bucket size of 1eW tool calledkFetch kFetch chooses a Kad peer at random,
contacts £ = 10) and 3.25-bit Split Symbols, meaning Kad is downloads its complete routing table, and identifies stale entries
aD(3.25,1,10) system. Thel bit is due to the fact that Kad in the routing table by actively probing.¢., sending a lookup
uses unbalanced subtrees. Each interior node has branches igfi¥est) to each contact in the routing table. To locate a
labels 0, 1000, 1001, 101, 110, and 111. The 0 branch lead®&®r at random, kFetch generates a random Kad identifier,
the next interior node; the other branches leat-tauckets. The then performs a Kad lookup to locate the peer closest to that
average improvement per step3£5 + m(1, k) bits. We also Kad identifier. The routing table of the target peer must be
validated our understanding of the source code with empiricd@wnloaded quickly in order to minimize any error due to
observations of its operation. Therefore, according to Formul®B90ing churni(e., a contact that was actually present in the
the mean number of improved bits per step is 6.98 in Kagetwork might depart before kFetch probes it). There are two
As a special case, Kad's root node has a full 16 branches,&llenges to download a routing table efficienfly the rate of
it improves at least the 4 most significant bits and 7.73 bifgquests (which are UDP messages) must be properly paced to

on average on the first step. To account for this, we revi§aPidly download the table without causing excessive network
Formula 1 as follows: congestion, andfi) lookup messages must request the right IDs

to extract a peer’s routing table with the minimum number of

logy n — ¢(4,1,10) @ messages. kFetch implements congestion control using a variant

t(3.25,1,10) of the SACK TCP algorithms to determine the proper rate for

issuing requests. kFetch computes the routing table structure of

Thus, the expected number of hops in Kad is W, the target peer according to Kad'’s rules for populating them and
Estimating Network Size Toward this end, we need angenerates a query for eag¢hbucket the peer may have. This
estimate of the size of the Kad network)( An obvious strategy could be used to extract the routing table in any DHT
approach would be to crawl the Kad network to capture tiBat uses iterative routing. In addition, it examines the returned
entire popu|ati0n of peers. However, Craw"ng thetire Kad data to determine when a branch of the tree is empty, and will
network takes too long due to the large size of routing tablesit issue queries for the empty subtree. Additionally, for each
each peer and the |arge number of peers in the network. Beca@ﬂg@ovel’ed contact, kFetch queries the contact to verify whether
churn occurs while the crawler runs, a very long crawl would is still present in the network, concurrently with continuing
result in an inflated population count as it would record a lardg@ download the routing table.
number of short-lived peers that are not simultaneously present. o
However, crawling a subnet is much faster than crawling tife Characteristics of Kad Tables
whole network. Since Kad identifiers are selected uniformly at Using kFetch, we retrieved the routing tables of approxi-
random, any subset of the ID space (such as a subnet) imately 80,000 distinct Kad peers in June 2005 and examined
representative sample of the total population. Multiplying thgvo properties of theirk-buckets: (i) completenesss the
measured size of a subnet by the number of such subnets yigltigther the bucket contains the appropriate number of entries,
an estimate of the population size. By taking the mean ovgiven the size of the Kad network; ar(d) freshnessis the
many such samples, we can get a good estimate.for number of contacts in the routing table that are still active,(

In our previous work [16], we developed a parallel peedo not point to departed peers). Figure 3(a) shows the mean
to-peer overlay crawler, calle@ruiser. Given a Kad overlay number of contacts (“Known”) in each routing table bucket
subnet as an inpute(g., 0x5cd/12), Cruiser walks the DHT as a function of the bucket’'s subnet mask. It also shows what
structure to capture a snapshot of all the active peers with IBaction of these contacts are freste(, the contact responded
in the specified subnet. For example, it can capture a /10 subteebur ping). The “ldeal” line indicates the average number of
with roughly 1000 peers in around 3—4 minutes and a /12 subgentacts we would expect to be in each bucket if the routing
with roughly 250 peers in around one minute. During Jurtables were perfectly up to dame.,min(l(), 2%) wherez is
of 2005, we captured the population size for several hundrgge number of bits in the address mask anig the population
randomly selected subnets with Cruiser. Our measuremesitze. All three curves (Ideal, Known, and Fresh) decrease off
reveal that the Kad network has a mean population size siteply as the mask length exceeds 16 bits, due to the limited
approximately 980,000 concurrent peers. Given this estimateagmber of matching contacts in the system. For shorter masks,
group size for the Kad network, a lookup over Kad requiremn average each bucket has one or two empty slots and contains
log, 980, 000 ~ 19.9 bits of improvement, and a lookup in Kadone stale contact. The mean number of empty slots is slightly
should take”"g.;gg'73 +1 = 2.7 hops (according to Formula 7), higher as the mask length increases.
assuming perfect routing tables. This is significantly better thanin Figures 3(b) and 3(c), we examine the number of fresh
predicted by the formula of prior work [4] o% + 1= contacts in each bucket normalized by the total number in
6.30 hops. Correctly incorporating the effect of randomnesgach bucket and by the expected (ideal) number, respectively.
alters the predicted performance by more than a factor of twbigure 3(b) shows the mean number of fresh contacts as a

steps per lookup in Kad: +
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fraction of the number of contacts actually present. This shoWhey show that for both completeness and freshness, nearly all

that around 90% of entries are fresh for masks up to lendthckets are close to the average value. Therefore, we may use

around 16, then the fraction of fresh entries decredsesthe the average value for the purposes of our computations without

number of stale entries increases. This is because the curietitbducing considerable error.

implementation of eMule doesn’t ping peers in buckets which Using an average of 1.5 empty slots plus 1 stale contact per

are not at least 70% full. In fact, in Figure 3(c), where wbucket, we have an effective bucket sizekot 10— 1.5—-1=

examine the number of contacts relative to the ideal numbe@r;. This increases the expected hop count slightly from 2.7 to

above /17 there are actually more stale contacts than act&% + 1 =2.91 hops, according to Formula 7. This is

peers anywhere in that subnet, causing the normalized vadiéi significantly better than the previously predicted value of

to exceed 100%! Peers gradually accumulate stale contact$.i80 hops.

these buckets which are expunged too slowly. As a conseNote that we are unable to change the routing tables in

quence, virtually every lookup in Kad necessarily ends witthe entire Kad network. Therefore, we explore client-based

timeouts to stale peers even though the closest peer has alresitdynatives to improve lookup performance in Kad and evaluate

been contacted! This is a direct result of eMule’s policy of nafifferent techniques to improve the efficiency and consistency

expiring contacts in mostly-empty buckets. As this routing tabtsf lookup in the following two sections.

maintenance problem can trivially be corrected in the eMule

code, in the remainder of this paper we emulate the correct V. IMPROVING LOOKUP EFFICIENCY

behavior as follows. After a lookup completes, we compute thewe turn our attention to client-based approaches to improve

latency as the time from the start of the lookup until kLookughe performance of iterative lookup over a DHT that has in-

receives a packet from the closessponsivepeer. accurate routing tables. While incomplete buckets will degrade
From Figure 3(a), we see that on average there are 1.5 empgyformance as described in the previous section, stale contacts

slots plus 1 stale contact per bucket. We could plug 10 — can dramatically increase latency by causing timeouts to occur.

1.5 — 1 = 7.5 into our formula, but first we must validate thatSince the timeout interval is typically set to at least a few round-

most buckets are close to the average state. If the variancéijs times, it can easily exceed the desired time for the entire

very high €.g.,if 85% of buckets had 10 entries and the othdpokup.

15% were completely empty), then using the average would

introduce considerable error. Towards this end, Figures 4(k) Parallel Lookup

and 4(b) present the CDF of the number of contacts and freshfo improve performance despite inaccurate routing tables,

contacts across all observed buckets for masks /4, /8, and /dlients {.e., end-points) can perform parallel lookup. While



parallel lookup has traditionally been used exclusivelyhwitany source ID toany destination ID without requiring local
iterative DHTSs, Jinyang Let al. [5] present a technique for access to those peers. To emulate a lookup from a particular
performing parallel lookup on a recursive DHT. source ID, kLookup takes the following steps. First, it uses a
In a parallel lookup, a client simultaneously manages muliiscal Kad routing table to locate the peer closest to the source
ple lookup requests to different peers and performs the looklip (i.e., the source peer), then it extracts the routing table of
process based on the information obtained from all requedts source peer using kFetch. Finally, it performs a lookup to
reducing the problem of hitting stale contacts, and improvirthe destination ID using the routing table of the source peer.
lookup performance at the cost of greater network overhekldookup implements an adjustable degree of parallelisin (
(i.e., a larger number of requests per lookup). Parallel lookwpith both strict and loose parallel lookup.
has two other significant advantages. First, lookup requests i
facilitate populating or passively updating the routing table8: Evaluating Parallel Lookup
which in turn reduces the bandwidth requirement for explicit We evaluated the performance of both types of parallel
updates, as shown in [7]. Second, during each step of the lookapkup techniques under varying degrees of parallelism. Using
process, parallelism increases the number of contacts searchkdpkup, we captured several hundred lookups for differ-
increasing the probability of finding a contact closer to thent values ofa for both strict and loose parallelism. Each
target (.e., with more matching bits) and thus decreasing theokup used a unique, randomly-selected source and a unique,
number of hops needed to reach the target. We examine thedomly-selected destination. In our evaluation, we examine
following two classes of parallel lookup techniquéB: Strict three metrics:

Parallel lookup andii) Loose Parallel lookup. « Hops: The number of hops from the source to the desti-

1) Strict Parallel Lookup: In this approach, a client begins nation
a lookup by sending lookup requests to théest known « Latency: The duration from the start of the lookup to when
contacts. Similar to the window-based congestion control ~a response is received by the final destination, which is a
in TCP, a client restricts the number of requests in-flight ~ function of the number of hops and the time spent waiting
to a. A new request is issued only when a pending for responses and timeouts
request times out or a response is received. The resulting Messages SenfThe overhead used to perform the lookup
overhead is limited to a factor af. The downside of  As we mentioned earlier, increasingcan reduce the number
the strict approach is that when a client sends a packgitiookup hops by providing more opportunities to randomly
to a departed contact, it must wait for a timeout témprove extra bits. Figure 5 shows that the mean number of
occur before giving up. In the meantime, the degrasops decreases slightly as increase providing empirical
of parallelism is effectively reduced by one. Howevekupport. Furthermore, the hop count fer= 1 is around 3.2,

a timeout is typically set to at least a few round-trigvhich is close to our predicted lower-bound of 2.9.

times which is on the order of the desired time for the Since the number of hops is as expected, the next question
entire lookup. Thus, in the strict approaah,roughly is: how much latency is introduced to lookup by timing out due
determines the number of timeout events a client cad stale contactsFigure 6(a) compares the latency of the two
experience without incurring a significant latency penaltgpproaches for several valuesafThe first observation is that
Kademlia uses this approach. the latency forx = 1 is very high—close to 10 seconds. Using

2) Loose Parallel Lookup Parallel lookup can be per-a value ofa = 3 dramatically reduces the latency, with dimin-
formed in a looser fashion by allowing more than ishing returns for larget.. Second, Figure 6(a) reveals that the
requests in flight. In this approach, a client can issugose approach is just barely quicker than the strict approach for
a lookup request to a contact that is among the dop constanta. The greatest advantage of loose parallelism is that
contacts as soon as such a contact is identified, even if this
lookup request increases the number of pending requesf§his figure is noisy due to the narroyaxis range. The general downward
beyonda. For example, ifo = 3, the lookup begins by end is nevertheless visible.
sending 3 lookup requests. If the first response contains
3 better contacts (which is likely), 3 more requests are

sent immediately. While this approach appears to be 327 Strict
significantly more expensive than strict parallel lookup, Ug’ 3.15 7

it incurs only modest additional overhead since later i 3.1 1

responses from the same step are less likely to contain % 3.05 -

better contactsi.g., each time a packet is sent, the bar S 5

has been raised). The advantage of this looser approach 505 | | | | |

is the ability to quickly abandon lookups that are likely
to time out. This approach is used by eMule.

kLookup: To examine different lookup strategies, we devel-
oped a new tool, calleklLookup which performs a lookup from Fig. 5. Effect of parallel lookup on hop count
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Fig. 7. Performance improvement gained by fixing the bugs in eMule 0.45a

it is significantly less likely to get stuck waiting for timeouts taComparing with eMule: As part of creating kLookup, we

occur. However, as we show in Section lll, few contacts in Kaalso attempted to exactly reimplement eMule 0.46a’s lookup
are stale. This explains why loose parallelism does not shalgorithm. We validated this mode of kLookup by extending
much performance improvement for this network. tcpdump to decode Kad packets and performing lookups for

the same key using kLookup and eMule itself to verify their

.To examine the communication overhead of parallel IQOKUQmiIarity. In the process of implementing eMule’s lookup algo-
Figure 6(b) shows the number of packets sent as a funcpon ofithm, we discovered a few bugs [17]-[19] which significantly
for the two approaches. In both cases, the overhead mcrea&g&rade its efficiendy

roughly linearly with «, with the loose approach generating

roughly twice as many messages as the strict approach. Gi\é?@MuIe's current lookup algorithm with and without the bugs,

that for fixeda the performance of strict and loose parallelisr'ﬂ,| the hope that it will be of use to the eMule developers
are quite similar, strict parallelism is the better choice for th :

'Kgain, we examine performance in terms of hops and latenc
current Kad network. To directly compare the two, Figure 6( gain, P p Y

f by plotti he lookun h ; : nd overhead in terms of the number of messages. These
actors outa by plotting the lookup hops as a function 0experiments are based on more than one-thousand experiments
the overhead. This figure shows that asymptotically the perf

?{éing kLookup from unique, randomly-selected sources and

mance of strict and loose parallelism are surprisingly Sim”a(fEStinations. With the bugs fixed, eMule’s lookup algorithm
A large number of messages represents the lower boundigr& — 3 with loose parallelism '

lo.lolku.p thpS:ﬂnQ amount offmcreased&e:;all;ahsm OJ ?r?ytk'nd Figure 7(a) presents a CDF of the number of hops to perform
will significantly Improve performance. € low-end, the two, Ilookup. The mean value is 3.59, somewhat worse than our
perform the same since the two approaches result in |dent|ga

behavior for the special case — 1. However, the sweet-spot halytically predicted value of 2.91. Without bugs, the number

. . L of hops drops to 3.08, which is closer to our predicted lower-
for strict parallelism & = 3) is significantly better than the boung Figupre 7(b) shows the latency of the ?WO versions. In
sweet-spot for loose parallelism. : '

both cases, there is a significant tail (not shown) out to around
In summary, these observations show that strict parallelisfR seconds. We see that the fixed version improves by around

with @ = 3 is a good choice for the current Kad networkl second in most cases. The most striking difference however

Higher values ofx and loose parallelism substantially increase

overhead without much change in performance. Also, Figure gOur results are based on eMule version 0.46a, the most recent version

id t id for th t f lvsi available at the time of our study. We have been corresponding with the eMule
provides strong evidence Tor the correctness or our ana ys'sd@eloper team regarding these discoveries, and at least some of the reported
Section Il

bugs were corrected in 0.46b.

As part of our study, we wanted to compare the performance
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is in the overhead, as shown in 7(c). The fixed version usaspublish operation which returns a set of peers to publish
roughly half as many messages on average. on. The following lookups to the same key emulate query
operations, returning a set of peers in response to the actual
guery. Computing the fraction of queries that successfully find
Ideally, each peerin a DHT is responsible for a certain part ofie of the target peers yields an empirical measure of the
the DHT identifier space and lookups for any identifier shoulbnsistencyp, for that experiment. We perform the lookups as
lead to the responsible peer. In practice, peer churn causes tmocurrently as possible to limit the effects of peer departure
types of inaccuracies in routing tables: and arrival. For these experiments, we used strict parallelism

1) Peers may not yet have pointers to a recently arrived p#th @ = 3. We conducted this experiment 20 times for each

2) Peers may have stale pointers to a recently departed p&dpe ofc in the interval([1,10] (i.e., 1000 lookups per value

When routing tables are incorrect, it is possible for somOJ c: 20 experiments and 50 lookups per experiment).

parts of the identifier space to be unreachable for some peerdVe observed that for = 1, the consistency is only 89%,
The extent of these problems is determined by how frequenfif@ning that 11% of the time queries fail to find the same
the DHT validates its pointers, known as route stabilization [1]¢/0Sest” peer as a publisher. To explore how many replicas
compared to the rate of churn in the system. One approatfy Needed, Figure 8(a) plotsas a function ofc. For the

to minimize these problems is to increase the frequency YlU€c = 3, the consistency is over 99.9% across the twenty

route stabilization. However, this significantly increases tm¥-100KuUp trials. Fore = 2, the consistency is in between, at

VI. IMPROVING LOOKUP CONSISTENCY

bandwidth required for route maintenance. around 96%. o _
o The above values are for findirany of the replicas. How-
A. Content Replication ever, another issue regarding consistency is how effectively all

An alternative approach is to map each identifier to the <@k the replicas can be found. If one replica can always be
of thec closest peers in the identifier space, rather than to orggated, but the others cannot be, then lookups will fail if the
the single closest peer. The publishing operation performsP8e easy-to-locate replica becomes unavailable. Therefore, for
regular lookup, then searches the surrounding area to find 8f€h replica we compute the number of lookups that found it,
closest peers. The search operation does the same, and as IBRg Plot it as a CDF in Figure 8(b). An ideal curve would be
as the two find any peer in common the search will succeedVertical line atr = 100%, indicating that every query found
Kademlia [4] takes this approach as a basic principle; howeveYery replica. The Figure shows that the performance for the
it can be used in almost any DHT. For example, DHash [@arby-replication method is indeed good, with roughly 50%
implements this technique over Chord. The parametsust Of queries able to find every replica, and 80-90% of queries
be chosen based on knowledge of the degree of routing taBfe to find 80% of the replicas.
inaccuracy, to guarantee with high likelihood that multiple In summary, our results show that locating the three closest
lookups will be able to find peers in common. nodes after finding the closest peer is an effective way to cope

The key question iswvhat is the right value of to guarantee With routing table inconsistencies. More importantly, we show
a certain level of reliabilityp? In the following subsection, we that even routing table inconsistencies can be a considerable
use empirical techniques to answer this question for Kad. problem in practice with more than 11% of lookups failing
when no replication is used.

Comparing with eMule: Currently, eMule uses a fuzzy al-

To explore lookup consistency, we extended kLookup @orithm which selects several peers as part of the endpoint
locate thee closest points after its regular search has completext that are not necessarily the closest. In addition to our
To get an empirical measure fpr we use kLookup to perform experiments for different values ef we also conducted more
50 lookups to the same key, each from a different and randdhan 60 experiments using eMule’s algorithms for publishing
starting point in the Kad network. The first lookup emulateand lookup. We found that eMule’s approach produces 19

B. Evaluating Lookup Consistency



replicas on average and queries succeeds 99.9% of the timén summary, prior work on DHTs has been driven by
While robust, this is 6.3 times more replicas than simplgnalysis, simulation, and limited experiments. In each case, a
using ¢ = 3. Furthermore, Figure 8(b) shows the CDF of thenodel is used to approximate or estimate real-world behavior.
percentage of all replicas each lookup found. The performantis paper presents experiments on a deployed DHT that has
is substantially worse than the nearestpproach, with many approximately one million real users, and develops tools and
replicas being found by only a few queries. For example, 508chniques for improving its performance.

of replicas could be found less than one-third of the time,
compared to just 3% for = 3. Additionally, some replicas
were not found byany queries.

VIII. CONCLUSIONS ANDFUTURE WORK

This paper examines lookup performance over the Kad DHT
network. We analytically derive new formulas for the expected
VIl. RELATED WORK hop count, taking into account random improvements, and
Early work on DHTSs focused on introducing new DHTs [1]-demonstrate that Kademlia’s use lobuckets leads to signifi-
[4] that each achieve® (logn) lookup hops using (logn) cantly better performance than previously reported. We present
state per peer. Initially, it was difficult to directly compare th@ew tools, kFetch and kLookup, to characterize the accuracy
performance of these DHTSs, as each DHT has several tunatlleouting tables in Kad, examine the impact of routing table
parameters, which might cause them to perform better or worsgcuracy on efficiency and consistency of the lookup opera-
under different loads. For example, under low churn a DHiflon, and experimentally verify our analysis. Furthermore, we
with a large routing table will perform better since it carexplore two types of parallel lookup techniques and their impact
achieve faster lookups and route maintenance is inexpensive.lookup efficiency and also examine the degree of replication
The same DHT will perform poorly under heavy churn. needed to cope with routing inconsistency. While some of our
Several studies [7], [10], [20]-[23] have attempted to addresmpirical results are specific to Kad, our analysis applies to
the issue of DHT performance under churn, in most cases usotger prefix-matching DHTs such as Pastry and Tapestry and
a simple Poisson model for session length. However, sevetalld be modified to handle other DHT geometries.
measurement studies of peer-to-peer systems [24]-[28] shovin our future work, we plan to measure the bandwidth eMule
that session times are dramatically different from Poisson. lises for route maintenance and study ways to maintain higher
this study, we conduct experiments using the real Kad netwodyality routing information at lower cost. We also plan to
i.e., under real churn. use our recent measurement-based characterization of churn in
Gummadiet al. [6] showed that DHTs can be broken intopeer-to-peer systems [29] to determine the number of replicas
two components: geometry (or structure) and lookup strategyeded to guarantee the availability of a piece of data within the
Some DHT geometries provide greater routing flexibility thanetwork. This will include a mathematical analysis of the trade-
others in terms of neighbor selection or route selection. Foff between republishing the data more frequently to a few
example, in CAN a peer’s neighbors are precisely defingaers versus publishing infrequently to many peers, followed
by the geometry, while in Chord there a2& ' options for by empirical experiments to validate our findings.
the ™" neighbor, providing Chord substantially more flexibility
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