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The Internet has witnessed an explosive increase in the popularity of Peer-to-Peer (P2P) file-sharing applica-

tions during the past few years. As these applications become more popular, it becomes increasingly important

to characterize their behavior in order to improve their performance and quantify their impact on the network.

In this paper, we present a measurement study on characteristics of available files in the modern Gnutella

system. We develop two new methodologies to capture accurate snapshots of available files in a large scale P2P

system. These methodologies were implemented in a parallel crawler that captures the entire overlay topology

of the system where each peer in the overlay is annotated with its available files. We have captured more than

fifty snapshots of the Gnutella system that span over one year period. Using these snapshots, we conduct three

types of analysis on available files:(i) Static analysis,(ii) Topological analysis and(iii) Dynamic analysis. Our

results reveal several interesting properties of available files in Gnutella that can be leveraged to improve the

design and evaluation of P2P file-sharing applications.

1 Introduction

During the past few years, the Internet has witnessed an explosive increase in the popularity of Peer-to-Peer

(P2P) file sharing applications. Today’s popular P2P file-sharing applications such as eDonkey, FastTrack, and

Gnutella have more than one million users each at any point of time [2] and make up a significant portion of

Internet traffic [3]. These applications are primarily used for exchanging multimedia files among participat-

ing peers. Participating peers collectively form an overlay that is used to search for desired files among those
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available throughout the system. As file sharing applications become more popular, characterizing their behav-

ior becomes increasingly important because it reveals performance limitations of these applications in practice

as well as their impact on the network. To fully characterize the behavior of file-sharing applications, three

equally important and related aspects of these applications should be examined through measurement:(i) Over-

lay topology [4, 5],(ii) Query workload [6], and(iii) Available files [7]. In particular, characterizing available

files among participating peers is valuable for several reasons. First, it reveals the properties, distribution and

heterogeneity of the contributed resources (i.e.,storage space and available files) by individual users in the sys-

tem. Second, it allows us to identify any potential design anomaly that might be exposed in a practical setting or

any opportunity that can be used to improve performance of these systems. Third, collected traces and derived

characteristics of available files through measurement can be also used to conduct more realistic simulations or

analytical modeling of available files in P2P systems.

During the past few years, a handful of previous studies have characterized the distribution of shared files in

various P2P file sharing applications [7–10]. While these studies shed an insightful light on the characteristics of

files in file-sharing applications, they have several limitations. First, almost all the previous studies have focused

on a small subset of peer population in their target file-sharing applications (i.e., less than 20k peers). However,

to our knowledge, none of these studies have verified whether the captured peers are indeed representative

of the entire population. Second, many of the previous studies (except [7, 8]) are more than three years old

and thus rather outdated. During the past few years, P2P file-sharing applications have significantly grown in

size and have incorporated new features. In particular, most popular file sharing applications have adopted a

two-tier architecture along with new search mechanisms (e.g.,dynamics querying in Gnutella) to improve their

scalability. However, the effect of these new features on the characteristics of files has not been studied. Third,

previous studies have not examined the dynamics of file characteristics over time nor any possible correlation

between the overlay topology and file distribution.

In this paper, we empirically characterize available files across reachable peers in the modern Gnutella

network. We present two new measurement methodologies to capture an accurate snapshot of the system at a

particular point of time. A snapshot contains participating peers in the system, available files at each peer and

the pair-wise connectivity among peers (i.e.,the overlay topology). We have developed a fast P2P crawler called

Cruiser [11]. Using Cruiser, we have captured more than 50 snapshots of the files available in Gnutella that span

over a one year and each snapshot contains more than 100 million distinct files in each snapshot. Using these

snapshots, we conduct the following analysis on shared files in Gnutella:
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• 1) Static Analysis: We examine properties of contributed resources (i.e., files, and storage space) by

participating peers in individual snapshots of the system.

• 2) Topological Analysis: We investigate any potential correlation between the pattern of file distribution

among peers and the overlay topology.

• 3) Dynamic Analysis: We study variations in the popularity of individual files in the system, the variations

in available files at individual peers, and the percentage of changes in the Top-N files over time.

We also leverage an unbiased sampling technique for P2P system that we developed in our earlier work [12,13]

to select a representative subset of peers. This sampling technique is implemented in a light-weight sampling

tool, calledion-sampler. We useion-sampler to derive static properties of available files in Gnutella

and validate the similar characteristics that are derived from complete snapshots captured by Cruiser.

Our main findings can be summarized as follows:(i) Free riding has significantly decreased among Gnutella

users during the past few years and is significantly lower than other P2P file-sharing applications such as eDon-

key. (ii) The number of shared files and contributed storage space by individual peers are heavily skewed.(iii)

The popularity of individual files is also heavily skewed, with a handful of files being extremely popular while

a majority of files are very unpopular.(iv) The most popular file type is the MP3 file, which accounts for over

two-thirds of all files and one-third of all bytes. Both the popularity and space occupied by video files has tripled

over the past few years. Furthermore, the number of video files are less than one-tenth of audio files but they

occupy 25% more bytes. Overall, 93% of bytes in the system are occupied by audio and video files.(v) Files

are randomly distributed throughout the overlay and there is no strong correlation between the available files

at peers that are one, two or three hops apart in the overlay topology.(vi) The set of files shared by individual

peers changes slowly, with the median peer making a change every few days. Over the entire system, more

popular files experience larger variations in their popularity. Furthermore, the popularity of most files follows

a roughly similar pattern of initial increase for a few months until they reach their peak popularity and then

gradual decrease after staying at the peak popularity for a period of time.(vii) The percentage of changes in the

Top-N files over time does not strongly depend onN . The Top-N list changes roughly 20% over one week.

Furthermore, 60% of files that remain in the Top-N list for at least one week, will remain in the Top-N for at

least 10 weeks.

Why Characterize Gnutella? We conducted our empirical study of Gnutella based on a number of considera-

tions. First, Gnutella is one of the most popular P2P file-sharing networks on the Internet [2], with millions of

simultaneous users. Second, Gnutella has a protocol hook that allows a list of shared files to be accurately and
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Figure 1: Two-Tier Topology of Modern Gnutella

efficiently extracted from a peer. Finally, Gnutella is one of the most studied P2P systems in the literature. This

enables us to compare and contrast the behavior of modern Gnutella with earlier empirical studies of Gnutella

and gain insights on changes in the system.

The rest of this paper is organized as follows: We provide an overview of modern Gnutella in Section 2.

Section 3 describes the challenges in capturing accurate snapshots and describes our measurement methodology

and tools. Section 4, 5 and 6 present static analysis, topological analysis, and dynamics analysis of files in the

Gnutella network, respectively. Section 7 provides an overview of previous studies. Finally, Section 8 concludes

the paper and sketches our future plans.

2 Overview of Modern Gnutella

Gnutella is widely regarded as the first fully decentralized P2P file-sharing system. However, it has evolved

considerably since its initial release in early 2000, and grown dramatically in size (especially over the last

couple of years [4, 14]). Today, Gnutella is one of the largest P2P networks in operation [2]. Similar to many

unstructured P2P networks, each Gnutella peer joins the network by establishing TCP connections to several

existing peers in the system. In the original Gnutella protocol, participating peers form an unstructured overlay

topology that is used by each peer to perform flood-based searches among other peers. To improve the scalability

of the original protocol, modern Gnutella clients adopt a two-tier overlay structure along with a dynamic query

distribution mechanism [15].

Two aspects of Gnutella are pertinent to our study. First, because one of our goals is to examine correlations

between the distribution of shared files and the overlay topology, a general understanding of Gnutella’s overlay

topology is required. Second, we use Gnutella’s Browse-Host extension [16] to acquire the list of files shared

by each peer.

Two-Tier Topology: As shown in Figure 1, modern Gnutella clients implement a two-tiered overlay structure

by dividing peers into two groups:ultrapeers(or super-peers) andleaf peers. Each ultrapeer neighbors with
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several other ultrapeers to form the top-level overlay. The majority of the peers are leaf peers and connect to the

overlay through a few (2 to 3) ultrapeers. High-bandwidth, unfirewalled leaf peers become ultrapeers on demand

in order to maintain a proper ultrapeer-to-leaf ratio. When a leaf connects to an ultrapeer, it uploads hashes of its

filename keywords to that ultrapeer. This allows the ultrapeer to only forward messages to those leaf peers that

might have matching files. Leaf peers never forward messages. This approach reduces the number of messages

forwarded towards leaf peers which in turn improves the scalability of the system.

The Browse-Host Extension: One important reason for selecting modern Gnutella for file characterization is

its support for a suite of open and moderately well-documented protocols [17]. The Browse-Host extension [16]

is an extension of Gnutella protocol that enables one peer to view the list of files shared (called asharing list) by

another peer. This feature allows users with similar interests to learn about new material which may appeal to

them. Browse-Host is supported by the two major Gnutella implementations, BearShare and LimeWire, among

others. These two implementations collectively make up roughly 95% of Gnutella ultrapeers [4]. This implies

that the Browse-Host extension is able to capture the shared files by most peers in Gnutella.

3 Measurement Methodologies

Our goal is to capture asnapshotof the Gnutella network at a given point in time that contains(i) addresses

of all participating peers and the pair-wise connectivity among them (i.e., an overlay snapshot), and(ii) names

and sizes of available files at each participating peer in the overlay (i.e.,a file snapshot). In essence, we need to

capture snapshots of the overlay topology and annotate each peer with its available files. A common approach

to capture a snapshot is to use a P2P crawler. Given a set of initial peers, a crawler contacts individual peers

to capture their available files and collect information about their neighboring peers in the session. The crawler

progressively learns about more peers in the session and contacts them until no other new peer is discovered.

However, because the overlay changes as the crawler operates, snapshots captured by a crawler are inherently

distorted [18]. More specifically, as the crawler explores the overlay, many peers join or leave the system

which results in changes in the overlay topology and possibly changes in the set of available files throughout the

system. Therefore, the captured snapshot contains some peers that have departed or arrived during the crawl.

This problem is further aggravated in large overlays since the arrival of a sufficiently large number of new peers

may significantly increase the duration of a crawl and thus inflate the population of peers in a snapshot.1

1In the extreme case, the crawler may never terminate since there are always new peers to contact.
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Previous studies implicitly addressed this problem by adopting one of the following ad-hoc sampling schemes

to capture a partial snapshot of a P2P system:(i) Partial Snapshot Through a Short Crawl: Some studies pe-

riodically capture a small subset of participating peers (i.e., a partial snapshot) through a short crawl [10],(ii)

Periodic Probe of a Fixed Group: Some studies identify a subset of participating peers (using a partial crawl or

passive monitoring) and periodically probe the same group of peers to collect information about their available

files [9]. In the absence of any solid understanding of churn and file characteristics in P2P systems, it is not clear

whether these sampling strategies capture a representative population of peers. In our earlier work, we showed

that these ad-hoc sampling techniques could lead to significant bias towards the properties of the short-lived or

high degree peers [12].

We developed the following two measurement methodologies to capture lists of shared files in the Gnutella

network: (i) Capturing complete snapshots,(ii) Capturing unbiased samples. We describe both of these mea-

surement approaches in the following subsections. Capturing complete snapshots is our primary characterization

technique and we use unbiased sampling for validation.

3.1 Capturing Complete Snapshots

Our goal is to capture the entire population of participating peers in the Gnutella network (i.e., a complete

snapshot) within a short period to minimize any potential bias in our characterization. Note that the time required

to obtain the list of available files at individual peers is significantly longer than the time to obtain neighbor

information. For example, obtaining a list of neighbor peers from a peer may take less than a second whereas

the list of available files may take several minutes to download if the peer has many files. In summary, a

topology crawl is significantly faster than a content crawl. Therefore, we decouple topology and content crawls

to improve the accuracy of captured snapshots and collect our snapshots in three steps as follows: First, we

conduct atopology crawlto quickly capture all participating peers and their pair-wise connectivity,i.e.,capturing

the overlay topology. Second, we conduct acontent crawland collect the list of files available at each one of

the peers identified during the topology crawl. Third, once the content crawl is completed, we conduct another

topology crawl in order to identify those long-lived peers in the initial snapshots that remained in the system

during the entire content crawl. At the end of these three steps, we create a snapshot of the overlay topology

where each node is annotated with its available file and a label that describes whether it is long- or short-lived.

Since some of the captured peers in the first topology crawl depart the system during the content crawl, the
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collected content in our measurement is slightly biased towards peers with longer uptime. This motivates our

second technique, unbiased sampling, described in the next subsection.

To minimize distortion in captured snapshots, we have developed a parallel P2P crawler, called Cruiser [11],

that can crawl an overlay orders of magnitude faster than any previous crawler. Cruiser achieves this goal by

significantly increasing the degree of concurrency in the crawling process. Toward this end, Cruiser adopts a

master-slave architecture where each slave crawls hundreds of peers simultaneously and the master coordinates

among multiple slaves. This architecture allows us to run Cruiser on multiple co-located boxes to further increase

the crawling speed. Using six off-the-shelf 1 GHz GNU/Linux boxes in our lab, Cruiser can perform a topology

crawl for more than two million Gnutella peers in less than 15 minutes, and performs a content crawl within 5.5

hours,i.e.,capturing the annotated snapshot takes 6 hours, (15min + 5.5hr + 15min). During the content crawl,

Cruiser collects the file name and content hash (SHA1) for each shared file on every reachable peer, resulting in

a log file more than 10 GB in size.

3.2 Capturing Unbiased Samples

Capturing complete snapshots is a heavy-weight operation that provides a tremendous amount of information.

However, even with a fast crawler, there will inevitably be some distortion as the network changes while the

crawler operates. Sampling is a useful, light-weight alternative that does not suffer from distortion. However,

commonly-used sampling techniques for measuring P2P systems tend to introduce considerable bias for two

reasons[12]. First, the dynamic nature of peers (i.e.,churn) can bias results towards short-lived peers, much as

naively sampling flows in a router can lead to bias towards short-lived flows. Second, the heterogeneous nature

of the overlay topology can lead to bias towards high-degree peers, as peers with a high degree are more likely

to be discovered. In our prior work [13], we developed a light-weight sampling tool, calledion-sampler,

for P2P systems that selects peers uniformly at random. Theion-sampler tool performs a random walk and

selects the peer at the end of the walk as a sample. In static graphs, the Metropolis–Hastings method can be

used to weight the walk to result in uniform sampling [19–21], eliminating the degree bias. Our prior work has

shown [13] that it is also effective in eliminating the degree bias in dynamic networks such as P2P systems.

To avoid any bias based on session length, we allow re-sampling; effectively, instead of attempting to sample

a peer we are trying to sample a peer’s state (which may vary with time). Theion-sampler tool allows us

to gather many samples at once by running many walks in parallel. Our extensive simulations [13] show that

the technique yields unbiased samples under a wide variety of peer behavior, degree distributions, and overlay
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Figure 2: Population and reachability across captured snapshots

construction techniques. For this study, we use 1,000 parallel walks. We useion-sampler to collect peers,

then gather the list of files available from each sampled peer.

While sampling does not suffer from distortion, it provides fewer details than a full crawl. In particular,

it does not include a topological snapshot or session length information. Additionally, sampling provides little

information about unusual peers,e.g.,in the tail of distributions. For these reasons, we only employ sampling to

validate the results of our static analysis from complete snapshots.

3.3 Dataset

We have captured more than 50 snapshots of the Gnutella network annotated with the list of files available

at each peer. Our snapshots consists of daily snapshots from consecutive days during the following intervals:

6/8/2005–6/18/2005, 8/23/2005–9/9/2005 and 10/11/2005–10/21/2005.2 Furthermore, we have collected 24

snapshots, roughly once per week between 11/29/2005 and 05/30/2006. To avoid any time-of-day effects, each

snapshot was captured at approximately the same time-of-day (2pm PDT). These snapshots enable us to examine

characteristics of available files in the system over both short and long timescales (i.e.,several days and several

months). Additionally, we use unbiased samples collected on June 16th, 2006 and July 4th, 2006 to validate our

findings in Section 4.

Figure 2(a) depicts the number of ultrapeers and total peers across captured snapshots during our measure-

ment period. A subset of peers in each snapshot are unreachable by our crawler for one of the following reasons:

(i) a firewall or NAT blocking incoming traffic,(ii) severe network congestion or an overloaded processor at

the peer,(iii) the peer departed, or(iv) the peer does not support the Browse Host protocol. Figure 2(b) shows

the percentage of ultrapeers, leaf peers, and the total population in individual snapshots that were successfully

2We are missing snapshots for 9/6/2005, 9/8/2005, 10/17/2005, and 10/29/2005 due to a mixture of software, network, and power
failures.
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Type TCP Refused Timeout Conn. Lost App. Refused
Ultrapeer 31.30%–46.10% 1.74%–13.25% 1.78%–6.80% 0.97%–2.30%
Leaf Peers 53.53%–72.13% 1.12%–3.85% 4.24%–23.16% 1.27%–3.06%
All Peers 31.63%–46.74% 1.75%–13.03% 1.81%–7.08% 0.97%–2.30%

Table 1: The range of percentage of peers that failed during the file crawl for various reasons across all snapshots

contacted by the file crawler. This figure reveals that in average around 50% of ultrapeers, 12% of leaf peers and

18% of the total population are reachable by the file crawler. Table 1 presents the minimum and maximum value

for the percentage of unreachable peers within each group (ultrapeer, leaf, total population) for four different

reasons across all snapshots. “TCP Refused” column in Table 1 refers to attempts that were rejected by a TCP

RST message. “Timeout” column refers to attempts that did not receive any response. “Conn. Lost” column

refers to attempts that established a TCP connection, but the connection closed before the file list could be fully

retrieved. Finally, “App. Refused” refers to attempts where TCP connected, but the request for the list of files

was rejected at the application level. In a few cases, our crawler machines were under heavy load by other

users during our crawls, leading to a large percentage of timeouts and lost connections. Since ultrapeers are not

allowed to be firewalled, any reported connection error for ultrapeers indicates that the contacted peer has de-

parted. However, connection errors for leaf peers might occur due to peer departure or a firewall.3 In our earlier

study of Gnutella overlay topology [4], we showed that about half of all leaf peers captured in a topology crawl

leave the overlay within a 5 hour period. Independent online statistics [22] report that around 70% of leaf peers

in the Gnutella network are firewalled. These evidences support the accuracy of the high ratio of connection

errors that we experienced for leaf peers (in the column labeled “TCP Refused”). In summary, while we aim to

capture complete snapshots, we can successfully contact only 20% of all peers in one snapshot (around half a

million peers) to obtain their list of available files primarily due to two reasons:(i) the number of departed peers

during the long file crawl, and(ii) the large number of leaf peers behind firewalls.

3.4 Challenges and Problems

We briefly discuss several interesting problems that we experienced during data collection and data processing.

Firewalled peers: Our crawling and sampling tools are unable to contact firewalled peers that cannot accept in-

coming TCP connections on the Gnutella port. As a consequence, if firewalled peers have significantly different

file-sharing characteristics compared to un-firewalled peers, our results may not be representative of the entire

Gnutella population. However, we have no reason to believe this is the case.

3We are not aware of any reliable technique to distinguish between these two scenarios.
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Low-bandwidth TCP Connection: Although Cruiser has a timeout mechanism that closes any idle connections

after 20 seconds, we noticed that some crawls do not complete after the crawling queue becomes empty. Further

examinations revealed that around 80 peers in each crawl send their data at an extremely low rate (around 20

bytes per second) which prevents Cruiser from closing their connections. We instructed Cruiser to terminate a

crawl a few minutes after its crawling queue becomes empty. Given the negligible number of these misbehaved

peers, this should not have any affect on our analysis.

File Identity: We use the content hash of a file returned by the target peer to uniquely identify individual files.

In our initial measurements, we observed many files with the same name but different content hashes (e.g.,

setup.exe, login.bmp). This illustrates that the trimmed (or even complete) filenames used by previous studies

(e.g.,[9]), are not reliable file identifiers. We also discovered around 3,500 files without content hash value in

each snapshot and eliminated them from our analysis.

Post-processing: To compute the popularity of individual files in the system, we needed to keep track of more

than 100 million distinct files discovered in each snapshot. The large number of files resulted in memory bot-

tlenecks in our analysis. We leveraged the skewed distribution of popularity to address this problem as follows:

We divide captured peers in a snapshot into seven segments where each segment contains a random subset of

the peers. Then, we calculate the popularity of files within each segment, trimming all files with fewer than 10

copies in a segment, and combine all the trimmed segments into a single snapshot. This approximation elim-

inated several million distinct files and prevented memory bottlenecks during our post-processing. While this

prevents us from performing analysis on the least popular files (with fewer than 70 copies in the entire network),

it does not significantly affect conducted analysis on more popular files.

4 Static Analysis

In this section, we examine the following static characteristics of available files across peers in individual snap-

shots regardless of their location in the overlay topology:(i) the percentage of free riders,(ii) the degree of

resource sharing among cooperative peers,(iii) the distribution of file popularity, and(iv) the distribution of file

types. Furthermore, we investigate the variations of these characteristics across our twelve-month measurement

period and examine to what extent these properties are fundamental rather than ephemeral. We derive these

characteristics from both complete snapshots and sampled peers and compare them to verify the accuracy of

our results. We also compare our findings with previous studies to illustrate any potential changes in these

characteristics of the Gnutella network over the past few years.
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Contacted Peers Free Riders(%) Files/Peer
Ultra 94,329–188,107 8.96–10.54 324–358
Leaf 253,164–395,682 10.81–15.85 347–406

Long-lived Ultra 69,441–147,435 9.27–10.78 320–354
Short-lived Ultra 24,888–40,672 8.08–9.77 335–371
Long-lived Leaf 166,241–240,969 11.39–16.93 369–437
Short-lived Leaf 86,923–154,713 9.93–13.79 316–358

Total 410,252–552,702 10.63–13.41 340–393

Table 2: Percentage of free-riders, its breakdown across different groups, and the mean number of shared files
among peer

4.1 Percentage of Free Riders

The success of P2P file sharing systems depends on the willingness of participating peers to share their files.

However, previous studies have frequently reported that participating peers do not have an incentive to contribute

their resources (e.g.,disk space and network bandwidth) to the system and thus only use resources offered by

others,i.e., become “free riders”. In particular, Adaret al. [23] reported that 66% of Gnutella peers were free

riders in 2000, while a study by Saroiuet al. [10] found 25% were free riders, with 75% of peers sharing less

than 100 files in 2002. A recent study also reported 68% of peers in eDonkey were free riders [7].

Table 2 presents the range (minimum–maximum values) for the number of ultrapeers (first row), leaf peers

(second row) and total peers (last row) across all snapshots. We further divide ultrapeers (row 3 and 4) and leaf

peers (row 5 and 6) into short-lived and long-lived based on their presence in the second topology crawl as we

discussed in Section 3. This grouping reveals any potential differences in the free riding between ultrapeers and

leaves as well as long- versus short-lived peers. For each one of the above groups, the corresponding row in

Table 2 presents the range of the following properties across all snapshots(i) the number of contacted peers that

provided their sharing list (2nd column),(ii) the percentage of free riders (3rd column), and(iii) the average

number of shared files among peers in each group.

Table 2 shows several interesting points as follows. The percentage of free riders in Gnutella has significantly

dropped from 25% in 2002 [10] to around 13% among all participating peers (i.e., last row), and it is drastically

lower than the 68% recently reported in eDonkey [7]. We speculate that several factors have contributed in

the observed drop in the percentage of free riders including the increase in access link bandwidth for average

Internet users and active marketing efforts by the Gnutella vendors encouraging their users to share. However,

an alternative explanation is that the higher percentage of free riders observed in previous studies is due to

measurement bias.
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Table 2 reveals that the percentage of free riding among ultrapeers (9.0–10.5%) is somewhat lower than

that in leaf peers (10.8–15.9%). However, on average leaf peers share more files. Since leaf peers constitute

a larger portion of the total population (86–90%), their behavior has a greater impact on system performance.

Long-lived peers appear to have a slightly higher percentage of free riders compared to short-lived peers. The

correlation between lifetime and number of files shared is inconclusive. Long-lived leaf peers share more files

than short-lived leaf peers, but long-lived and short-lived ultrapeers share about the same number of files.

4.2 Degree of Resource Sharing Among Cooperative Peers

We now focus our attention on cooperative peers and characterize their willingness to contribute their resources

(i.e.,both files and storage space). During our analysis, we noticed that the sharing lists of many peers contain

duplicate files. This occurs because most Gnutella clients simply put various folders with potentially duplicate

content under the sharing folder. We have excluded all the duplicate files from captured sharing lists (which

account for around 10 million files or roughly 9% of all captured files) in all the reported analysis in this paper.

In the earlier version of this paper [1], we depicted the number of shared files and shared bytes per peer as

a histogram on log-log scale and concluded that both distributions resemble a power-law due to their approxi-

mately linear shape. Presenting these distributions as histogram results in a “messy”, difficult-to-interpret tail of

the distribution, due to the small number of peers in that region. This in turn makes it difficult to properly exam-

ine the slope of distribution. Presenting the distribution as a Complementary Cumulative Distribution Function

(CCDF) yields a smooth tail without losing any information while retaining the linear slope that a power-law

distribution exhibits on a log-log scale (since
∫
∞

x
u−αdu ∝ x−α). Toward this end, we compute the CCDF of

the number of shared files and shared bytes per peer for individual snapshots. To present the variability of these

distributions across all snapshots in a compact and clear fashion, we compute the MIN-CCDF and MAX-CCDF,

defined as follows:

MIN-CCDF(x) = min(CCDFi(x) for all snapshotsi)

MAX-CCDF(x) = max(CCDFi(x) for all snapshotsi)

Figures 3(a) and 3(b) present the MIN-CCDF and MAX-CCDF for CCDF of shared files and shared bytes

across all snapshots,i.e., the CCDFs from all the snapshots fall in between the MIN-CCDF and MAX-CCDF

curves in the corresponding graph. Figures 3(a) and 3(b) also include the CCDF for shared files and shared

bytes per peer based on samples collected withion-sampler, to verify whether the results from complete
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Figure 3: Distributions of files and bytes

snapshots are significantly affected by distortion or not (as described in Section 3). Note that the MIN-CCDF

and MAX-CCDF curves in both figures are very close which indicates that the the CCDF for shared files and

shared bytes per peer across all snapshots are very stable. Furthermore, the CCDFs from sampling are consistent

with the results from complete snapshots, except in the tail of the distribution where the precision of sampling

is low.

To verify our earlier conclusion, we recall that power-law distributions arescale-free. This means that the

“slope” (α) of distribution is consistent over many orders of magnitude on a log-log scale. While the histograms

presented in the earlier version of this paper appear approximately linear [1], it is not possible to closely fit a line

over the entire range ofx values due to the subtle downward curvature. This curvature is more apparent in the

CCDFs in Figures 3(a) and 3(b). Based on these considerations, we revise our earlier conclusions as follows:

the distributions of the number of files and bytes shared by individual peers are heavily skewed but do not appear

to follow a power-law distribution. Most peers share a moderate amount of files (or bytes) while a few peers

contribute an enormous amount of content (or space). The median value for shared files is around 70 files while

0.01% of peers share more than 7,500 files. The median value of shared space is around 650 MB while 0.1% of

peers contribute more than 85 GB.

Correlation between Contributed Files and Bytes: Saroiuet al. [10] reported a strong correlation between

the number of shared files and the volume of shared data across Gnutella peers in 2002. Figure 4(a) shows

this correlation as a scatter-plot across all cooperative peers in one snapshot (June 13th, 2005). Each point in

this figure represents the number of shared files versus the shared disk space for each cooperative peer. We

observe a greater variability than what has been reported by Saroiuet al. in 2002. However, this may simply

be due to the larger number of data points in our scatter-plot. To verify this issue, we sampled one out of every

hundred data points in Figure 4(a) and the selected samples are shown in Figure 4(b). Figure 4(b) reveals a
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Figure 4: Scatter-plot of number of shared bytes as a function of number of shared files. Each point represents
one peer. The reference line is 3.544 MB per file.
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Figure 5: Distribution of filesize across all files

strong correlation between the number of files and the number of bytes contributed by each peer which was

obscured in Figure 4(a). We performed a least-squares fit to a line through the origin (0 files = 0 bytes), finding

a slope of 3.544 MB per file. This is consistent with the size of a MP3 file that is a few minutes long (i.e., a

typical song). Figure 4(c) shows the correlation between the contributed bytes and files by each peer using the

data gathered byion-sampler on June 16th, 2006—more than a year after the presented snapshot data in

Figure 4(a). Figure 4(c) fits to the same line and is consistent with the results from complete snapshots.

To gain a deeper insight about the correlation between contributed files and bytes, we derive the CCDF

distribution of file size among all files in individual snapshots. Figure 5(a) depicts the CCDF distribution of file

size in two snapshots that are six months apart in a linear-log scale. Figure 5(a) shows that the distribution of file

size has very little change between the two snapshots that are six months apart. This figure also indicates that

60% of all files are a few megabytes in size (i.e., the graph has a knee between 1 MB and 10 MB). Furthermore,

the majority of other files (around 40%) are smaller than 1 megabyte in size. Figure 5(b) shows the same CCDFs

for file size distribution of two snapshots on a log-log scale. This figure illustrates that a very small portion of

files (around 0.1%) have a size larger than 1 gigabyte.
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Figure 6: Distribution of file popularity across unique files

4.3 File Popularity Distribution

The distribution of popularity for individual files throughout the system is an important property that shows the

degree of similarity and thus availability of individual files among participating peers. Chuet al. [9] showed

that the file popularity follows a log-quadratic distribution, which can be viewed as a second-order power-law

distribution, among Gnutella peers in 2001. Furthermore, Fessantet al. [7] recently reported a Zipf distribution

for the file popularity in eDonkey. However, none of these studies have captured a large number of peers.

Figure 6 shows the range of CCDF for file popularity as a function of its rank (in log-log scale) among

cooperative peers across all snapshots. Each snapshot typically contains more than 800 terabytes worth of

content in more than 100 million unique files based on information from 0.4 million peers, constituting 18.5%

of identified peers. If we assume that unreachable peers have similar profiles, the volume of available content

in the Gnutella network is around 4,400 terabytes. Figure 6 illustrates two points:(i) file popularity is heavily

skewed, and(ii) the distribution of file popularity has remained very stable across the twelve month measurement

period. A small number of files are very popular while for most files only few copies are available in the network.

Again, we also present data collected using unbiased sampling, which closely matches the snapshot data except

for very unpopular files where sampling has poor precision.

4.4 File Type Analysis

We have also examined the distribution of available files among Gnutella peers across different types of video

and audio formats. This basically illustrates what types of content are available in the system and thus exchanged

among peers. Chuet al. [9] conducted similar analysis for Gnutella peers in 2001 and reported that audio files

constitute 67.2% of files and 79.2% of bytes. However, video files were significantly less popular and only

contributed 2.1% of files and 19.1% of bytes. Using our snapshots, we analyze the various types of audio and

video files based on file extensions.
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Figure 7: Breakdown of file types based on the contributed number of files or bytes by each file type

Figure 7(a) and 7(b) depict the contribution of the most common file types in the total number of files and the

total number of bytes across cooperative peers, respectively. These box-and-whisker plots present the variations

of the contribution by different file types across all snapshots by showing the 75th percentile (the top of the box),

25th percentile (the bottom of the box), the median value (the line through the box), the maximum value (the top

of the line) and the minimum value (the bottom line). The distribution of file types across all snapshots seems

fairly consistent with respect to both files and bytes (i.e., all boxes are small). Note that except for MP3 files,

each file type individually makes up at most a few percent of all files. MP3 audio files are significantly more

popular than any other file type, making up two-thirds of all files and occupying more than one third of all bytes

in the system.

Although non-media files (jpg, gif, htm, exe, txt) are among the top ten most popular types, audio and video

files collectively occupy more than 93% of bytes and make up more than 73% of all files in the system. These

figures also reveal that video files (avi, mpg, wmv) are significantly larger than other file types in the system. The

audio files (MP3, wma, wav) account for 67% of files and 40% of bytes whereas video files constitute around

6% of files but 52.5% of bytes among Gnutella peers (i.e.,most files are audio files, but most bytes are in video

files). Comparing to the reported results by Chuet al. in 2001 [9], video files have become three times more

popular and occupy almost three times more space in the system.

We are unable to apply our sampling technique for file type analysis because it samples randompeersnot

randomfiles. Consequently, analyzing the file data gathered withion-sampler shows significant correlations

based on the preferences of the peers collected. For example, in one instance we saw that 16% of files had the

jpg extension, due to sampling two peers with large jpg archives.
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Figure 8: Figures demonstrated the lack of a strong correlation between topology and files

5 Topological Analysis

In this section, we investigate whether copies of a given file are located at close-by peers (i.e., topologically

clustered) or at randomly scattered peers throughout the overlay. Understanding this issue would be useful in

the design and evaluations of search techniques in file-sharing applications. There are two factors that affect the

location of available copies of individual files throughout the overlay:(i) scoped search, and(ii) the dynamics

of peer participation (or churn). To accommodate scalability, each searching peer often examines available files

among nearby peers (i.e., conducts scoped search). This suggests that a single copy of a file gradually diffuses

outward from the original location to other nearby peers and some type of topological clustering might exist.

However, due to the dynamics of peer participation, the location of a peer in the overlay changes over time and

could prevent such clustering. The key question is which one of these two factors has the dominating effect. To

answer this question, we generate an annotated snapshot of the overlay topology where each peer is annotated

with its available files. Then, we explore topological clustering from the following two perspectives:

Per-File Perspective: We conduct trace-driven simulations of flood-based querying over our annotated overlay

topology. Figure 8(a) depicts the CDF of the minimum number of query messages to find five copies of a target

file from 100 randomly selected peers in the overlay. The lines in this figure correspond to five target files with

different popularity from our static analysis. The abrupt steps in the CDF indicates one-hop increases in the

scope of the search. Note that each CDF has at most two steps. This implies that most of the 100 randomly

selected peers find all 5 copies of each target file among other peers that are eithern or n + 1 hops away where

n inversely depends on the log of the target file’s popularity.

Clearly, more search messages are required for less popular files. If significant topological clustering exists,

a few searches will complete using very few messages (i.e.,fewer hops) while most searches will require a much
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larger number of messages (i.e.,many more hops). However, the pattern of increase in the number of search

messages for less popular files in Figure 8(a) indicates that files are randomly distributed.

To verify this conclusion, we randomized the placement of available files without changing their popularity,

guaranteeing that no topological clustering exists in the overlay. Figure 8(b) shows the CDF of the number of

required query messages to reach 5 copies of the same target files over the annotated topology with randomized

file placement. The high similarity between Figures 8(b) and 8(a) supports our conclusion that no significant

topological clustering exists in the locations of a given file throughout the overlay. It is worth noting that our

annotated overlay topology is incomplete due to the unreachable peers behind firewalls and departed peers. This

implies that the number of messages are likely to be smaller in practice. However, the unreachable peers should

not significantly affect topological clustering. More specifically, if a file is available only in a certain region of

the overlay, the clustering property is preserved even if information is absent for some fraction of the peers in

that region.

Per-Peer Perspective: We also investigate the possibility of any topological clustering from per-peer’s per-

spective by examining the degree of similarity between available content at a random peer and all its one-hop,

two-hop, and three-hop neighbors. The similarity degree between two peers is defined as the number of common

files divided by the smaller size of the sharing lists for the two peers. Figure 8(c) shows a separate CDF for the

average similarity degrees of 100 randomly selected peers with their one-hop, two-hop and three-hop neighbors.

If topological clustering were present, the similarity degree would decrease as the distance between comparing

peers increases. However, since the distributions are nearly identical, Figure 8(c) clearly illustrates that there is

no correlation between the similarity degree and distance between two peers.

These results suggest that churn is the dominant factor in determining the distribution of files throughout

the overlay. In our prior work, we observed that more than half of the Gnutella peers in a given snapshot will

depart within 5 hours [24]. Any time a peer joins the overlay, it attaches itself as a leaf peer to several random

ultrapeers. Furthermore, qualified leaf peers may become ultrapeers in order to maintain a proper ultrapeer-to-

leaf ratio. Hence, the rapid changes in the overlay topology prevents formation of such topological clustering.

This finding is important for two reasons:(i) Measurement studies may sample the list of files from random

peers in any part of the overlay topology, and do not need to capture the entire network.(ii) Simulation studies

may randomly distribute available files among participating peers regardless of location. However, the number

of files per peer and the total number of copies of each file should follow appropriate distributions, examined
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in Section 4. While previous studies have frequently assumedthese properties, to our knowledge, they had not

previously been empirically verified.

6 Dynamic Analysis

In this section, we turn our attention to the dynamic properties of available files in Gnutella. More specifically,

we investigate how various properties of available files change over time. Prior studies examined changes in the

popularity of queries and exchanged files in P2P file-sharing systems (e.g.,[6,25]). However, to our knowledge,

no study has previously explored the dynamic characteristics of stored files in P2P systems. For these analysis,

we leverage our three sets of daily snapshots that were captured once every two months, as well as several

months of weekly snapshots. This dataset allows us to explore dynamic properties over short timescales (i.e.,

hours and days) as well as long timescales (i.e.,months). We explore the following three dynamic properties of

shared files by peers in Gnutella:(i) variations in shared files by individual peers,(ii) variations in popularity of

individual files,(iii) long-term evolution of file popularity, and(iv) variations in Top-n files.

6.1 Variations in Shared Files by Individual Peers

Our goal is to determine how rapidly the available files at individual peers change with time. These dynamics

show whether past information about the available files at individual peers can be reliably used in future searches.

There are two types of change that can occur to the list of shared files at each peer. First, the user may add new

files, either by downloading them from other peers or by manually adding them to the shared folder. Second,

the user may remove files, by moving (or deleting) those files from the sharing folder. We note that dynamic

IP addresses may introduce error into our results when a peer departs from the system and another peer joins

the system with the same IP address. However, our prior study on churn revealed that such events are not

common [24]. We define the total number of added and deleted files at a single peer as thedegree of changeto

quantify both types of changes in shared files at each peer.

Figure 9(a) depicts the CDF of the degree of change for 3000 randomly selected peers over four different

timescales: 2 hours, 6 hours, 1 day and one week. This figure reveals that 36% of monitored peers do not change

their sharing lists over a one week interval. That number increases to 69%, 80% and 90% over one day, 6 hour

and 2 hour intervals, respectively. On the other hand, 90% of peers change less than 10 files over a 6 hour period,

less than 25 files over a one day period, and less than 80 files over a week. Given the average number of shared

files by each peer (which is around 350 from Table 2), this result indicates that the variations of shared files by
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Figure 9: Changes in popularity

individual peers is rather small especially over several days. While this finding is rather intuitive and expected,

Figure 9(a) allows us to quantify the distribution of the degree of change across different timescales. Finally,

this result implies that caching information about the available files at other peers (especially over the timescale

of few days) can be a highly effective bandwidth-saving strategy in P2P systems.

6.2 Variations in Popularity of Individual Files

In this subsection, we focus on the effect of changes in shared files by each peer on the popularity of individual

files across the system. Understanding the dynamics of file popularity can be used to determine how often the

popularity of available files should be sampled. To eliminate the effects of a varying peer population across

different snapshots, we define thepopularityof a file as the percentage of successfully contacted peers with the

file. Given the random distribution of files among peers, the popularity can be interpreted as the probability

of having that file at a random peer. We define thechange in popularityof a given file over intervalτ as the

difference between its popularity at the beginning and the end of such an interval (in percentage points).

Figure 9(b) depicts the change in popularity of 50,000 randomly-selected files over a one day interval as

a function of their popularity rank in a scattered-dot plot where each dot corresponds to a particular file. The

number of copies for the highest and lowest ranked files in this figure are roughly 28,000 and 130, respectively.

This figure clearly demonstrates the effect of file popularity on the variations of its popularity over a one-day

period. This figure shows that the most popular files (top 15,000) exhibit significantly larger variations (increase

or decrease) in their popularity compared to the rest of the files. Note that the changes in popularity for most

of the files are within 0.02 points. While the variations in file popularity rapidly drop with file rank among the

top 15,000 files, it becomes relatively stable across the least popular files and remains below 0.01 points. In

summary, a group of the most popular files experience wider variations in their popularity than unpopular files.
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Figure 10: Changes in file popularity over different timescales

To study popularity dynamics in further detail, we focus on the top-100 and top-1000 most popular files in

a particular snapshot and examine their popularity variations over different timescales. Figures 10(a) and 10(b)

plot the CDF graph of the change in popularity for the top-100 and top-1000 files, respectively, for intervals of 1

week, 1 month, 2 months and 6 months. Figures 10(a) and 10(b) individually show that the range of variations

in popularity of top-n files expanded with time. However, comparing these figures clearly illustrates that(i)

for any given timescale, more popular files exhibit significantly larger variations in their popularity, and(ii) the

popularity of more popular files changes more rapidly with time.

6.3 Long-term Evolution in Popularity

Two other interesting questions are “whether the long-term evolution of file popularity follows a particular

pattern?”, and “what does that pattern look like?” Intuitively, the popularity of a new file should gradually

increase with some average rate until it reaches its peak popularity. Then, it remains close to its peak popularity

for a while before its popularity gradually drops with time. However, the rate of change in popularity, the peak

popularity and the time that a file remains around its peak popularity could significantly vary across different

files.

To examine the pattern of long-term evolution in file popularity, we track the pattern of changes in the

popularity of top-10 files in the first, middle and last snapshots across all other snapshots over our one-year

measurement period. Figure 11(a) shows the evolution of the popularity in the Top-10 file in our first snapshot

(captured in June 8, 2005) during the one year intervalafter they appear in the Top-10 list. Despite the fluctua-

tions in the popularity of individual files, popularity of all files exhibit an overall downward trend. Figure 11(c)

depicts the evolution of popularity for the Top-10 files in our last snapshot during the one year periodbeforethey

appear in the Top-10 list. This figure shows that most files transition from very low popularity to Top-10 list
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Figure 11: Changes in the identity of Top-N files

in the span of a few months. Some of these files experienced a rather long periods of relative obscurity before

making rapid gains in popularity. However, two files transitioned gradually from obscurity to popularity over

the course of the year. Also note that two of the Top-10 files in the last snapshot appears to have passed their

peak popularity. Figure 11(b) provides a third point of view, examining the pattern of evolution in the popularity

of Top-10 files in the middle of our measurement window. This figure illustrates how the popularity of Top-10

files have changed during a six month period before and after they become Top-10. This figure shows that one of

the Top-10 files in this snapshot was more popular at the beginning of our measurement and has been gradually

losing popularity, while the other Top-10 files are newcomers that have been gaining popularity during the same

period. Afterward, they all gradually lose their popularity over the following six month period.

In summary, these figures show that files rise in popularity at varying (and often rapid) rates until their reach

their peak popularity. Then, they enter a period of slow decay where their popularity gradually drops. The

Top-10 most popular files at each snapshot is composed of three groups of files:(i) files whose popularity is

still rising towards their peak,(ii) files whose popularity is around their peak, and(iii) files whose popularity is

dropping.

6.4 Variations in Top-N Files

We examine how the changes in file popularity affects the identity of the Top-n files in the system over both

short and long timescales. In essence, this explores the rather subtle relationship between the popularity and

the ranking of Top-N files. Figure 12(a) depicts the percentage of the top-N files on dayx − 1 (starting at

06/08/2005) that remain in the top-N files on dayx (i.e., daily drift in the top-N list) for four values ofN .

Note that they-axis begins at 89%, indicating that the top-N list is highly stable from one day to the next. The

changes in the Top-N list are more visible for smaller values ofN mainly due to two reasons:(i) the sensitivity

to the small number of files (one change in the list results in1

N
variations) coupled with(ii) the noisy variations
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Figure 12: Distribution of how long files remain in the top-N

in the popularity of individual files that can easily change a couple of files at the bottom of the top-N list. The

main conclusion from this figure is that the identity of the top-N list remains highly stable across consecutive

days for different values ofN . Its minor variations is inversely proportional toN .

We also investigate the stability the top-N list over longer time scales, by examining how long files remain

in the top-N . We use the “create-based method” [10] to avoid bias towards files that remain in the top-N files

for a short period of time. Toward this end, we divide our measurement window into two halves. For any file

that enters the top-N during the first half of the window, we measure the number of weeks that a file remains

in the top-N . This technique provides us with unbiased measurements for files that remain in the top-N for up

to one half of the window (or 12 weeks). We can count how many files remain in the top-N for more than 12

weeks, but cannot accurately compute their distribution.

Figure 12(b) depicts the CCDF for the percentage of changes in the top-N files over time for different values

of N . This figure shows that approximately 20% of files remain in the top-N for only one week. However,

approximately 60% of files that remain in the top-N list for at least one week, will continue to remain in the

top-N for at least 10 weeks. More interestingly, the percentage of changes in the top-N files over time does

not appear to have a strong dependency toN . Note that over a given period, the number of changed files in the

Top-N list is proportional toN . Therefore, thepercentageof changes in the Top-N files is relatively similar for

different values ofN .

7 Related Work

Several measurement studies have examined different properties of P2P file-sharing networks including:(i)

dynamics of peer participations (i.e., churn) [24, 26],(ii) overlay topology structure [4, 5, 27, 28],(iii) query

traffic [6], (iv) data traffic [25, 29, 30], and(v) shared files [7, 8]. We are aware of only two other studies that
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focus on the characteristics of files shared by users. First, Fessantet al. [7] examined characteristics of available

files, using data collected from 12,000 eDonkey clients over a three day period in 2003. They showed that the

popularity of files stored in file-sharing systems is heavily skewed, following a Zipf distribution. When two peers

have 10 files in common, there’s an 80% chance they have at least one more file in common. The probability

is close to 100% if they have at least 50 files in common. Second, Lianget al. [8] recently analyzed the nature

and magnitude of deliberately corrupted files (“pollution”) in Kazaa. To combat P2P sharing of copyrighted

content, some companies intentionally inject decoy files, which have the same file name as a popular song.

Liang et al. developed a multi-threaded crawler that queries all 30,000 Kazaa super-nodes for seven popular

songs over the course of one hour. They showed that the popularity of different versions of a song also follows

a Zipf distribution. For most of the seven popular songs, over 50% of the copies are polluted.

A few other studies have examined the files shared by users as part of broader measurement studies on P2P

systems. In 2001, Chuet al. [9] studied peer churn and the distribution of file popularity. They found that file

popularity follows a log-quadratic distribution (which can be thought of as a second-order Zipf distribution).

Saroiuet al. [10] examined many characteristics of peers in Napster and Gnutella, such as their bottleneck

bandwidth, latency, uptime, and number of shared files in 2001. They found that the number of shared files was

heavily skewed.

Our study differs from the few previous studies on the shared files in P2P systems in at least two ways. First,

we used recent and accurate snapshots of the Gnutella network with a significantly larger population of peers

(i.e.,more than a million concurrent peers). Second, we presented two properties of the shared files that have not

previously been studied:(i) the correlation between shared files among peers and the overlay topology structure,

and(ii) the variations in popularity of shared files across participating peers over time.

Another group of studies passively captured P2P traffic at a router to characterize exchanged files among

peers. Gummadiet al. [29] analyzed a 200-day trace of Kazaa traffic collected at the University of Washington,

demonstrating that file transfers in Kazaa do not follow a Zipf distribution and argued that this difference is

due to the “fetch-at-most-once” nature of downloads in file-sharing applications. Another analysis of Kazaa

traffic was conducted by Leibowitzet al. [25] at a large Israeli ISP. They examined the changing popularity of

exchanged files among peers and showed that the data-sharing graph exhibits small-world properties. Note that

the pattern of exchanged files among peers affects the characteristics of shared files throughout the system, but is

subject to shorter-term trends. In contrast, the files shared by a peer may be the result of transfers over the course
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of months or years, followed by a gradual pruning of unwanted files. In summary, these studies on exchanged

files are closely related and complement our work.

8 Conclusions and Future Work

This paper presented a measurement-based characterization of available files in the Gnutella file sharing ap-

plication. We discussed the challenges in capturing an accurate snapshot of available files in P2P file-sharing

applications, and then presented two new measurement methodologies to achieve this goal. We used our parallel

crawl and our peer sampler to obtain fairly accurate snapshots of available files among peers in the Gnutella

network along with the connectivity among peers. Using these snapshots, we conducted three types of analysis

and provided a better understanding of the distribution, correlation and dynamics of available files throughout

the system.

We plan to continue this work in the following directions: We continue to collect many more snapshots to

characterize properties of Gnutella files over longer timescales. Furthermore, we plan to further examine the

models that properly capture each characteristics of available files in Gnutella. These models can be used in

simulation based evaluations of file sharing applications. Finally, we are in the process of making our dataset

publicly available to other researchers.
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