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Abstract— Due to the high cost of a Content Distribution
Network, most Internet users are not able to scalably deliver
content to large audiences. In this paper we study swarming,
a scalable and economic content delivery mechanism that
combines peer-to-peer networking with parallel download. First,
we define a swarming architecture that generalizes the basic
delivery mechanism in popular swarming protocols such as
Gnutella and BitTorrent. We then conduct a comprehensive
performance study of swarming delivery, using a variety of
workloads. Our results show that swarming scales with offered
load up to several orders of magnitude beyond what a basic
web server can manage. Most impressively, swarming enables a
web server to gracefully cope with a flash crowd, with minimal
effect on client performance. During the course of our study
we illustrate the benefits and limitations of a basic swarming
protocol and identify several key opportunities for performance
improvements.

I. INTRODUCTION

One of the most compelling and unique aspects of the
web as a communications medium is that any person has the
potential to provide content to a global audience. However,
the web has been only partly successful in realizing this ideal.
Although the web has been incredibly successful with regard
to access – for a small hosting fee, anyone can create a web
site – the overwhelming majority of Internet users can not
provide scalable delivery of their content to a large audience.

The main impediment to scalable content delivery is the
web’s dependence on a client-server model, which is in-
herently limited in its ability to scale to large numbers of
clients. As the load on a web server increases, it must either
begin refusing clients or else all clients will suffer from long
download times. This makes it difficult for a website with
limited bandwidth to serve large files or a large audience.
Of particular concern in recent years is a flash crowd event,
a phenomenon in which the client arrival rate at a web site
grows by several orders of magnitude in a short time.1

The masses – ordinary users and small or medium-sized
organizations – lack an effective means to deal with this
scalability problem. Buying more bandwidth helps a site
to serve a larger audience, but it takes a proportionately
larger amount of bandwidth to serve a larger audience, and
ultimately most users are limited in the amount they can pay.

1This phenomenon is also termed the Slashdot Effect because sites are
often overrun with load when a story on the Slashdot web site links to an
under-provisioned server.

A more effective mechanism for dealing with this scaling
limitation is a Content Distribution Network (CDN). A CDN
improves scalability by distributing a given provider’s content
to a set of servers, splitting the load among them. The high
cost of a CDN, however, makes this mechanism infeasible for
all but the largest organizations. Another potential solution
is proxy caching [2], [17], but this is useful primarily from
the perspective of an individual client for whom the cache
is available. From the perspective of the web server, caching
must be deployed at a wide number of sites in order to be
effective at reducing load. One last alternative is to multicast
content from the web server to a group of clients [4], but this
requires loose synchronization among the clients and mech-
anisms to accommodate heterogeneous client bandwidths.
Moreover, multicast is not yet widely deployed.

Recently, peer-to-peer systems have emerged as an alter-
native paradigm for content delivery, addressing the scaling
limitation of the client-server architecture by distributing the
burden of content distribution among a large set of clients.
Pure peer-to-peer applications, however, introduce two key
problems: peer location and peer instability. With a web
server, the location of the content is always known, whereas
a peer-to-peer application must locate peers with the desired
content. In addition, a web server typically stays connected
to the network (unless of course it becomes overloaded),
whereas in a peer-to-peer system peers may abruptly leave
the network at any time.

In this paper, we study swarming, a peer-to-peer content
delivery mechanism that utilizes parallel download among a
mesh of cooperating peers. We integrate swarming with a
standard web server to form a hybrid solution that combines
the simplicity and stability of client-server delivery with the
scaling benefits of a peer-to-peer network. For files that
are small or not popular, the web server delivers content
directly to clients (Figure 1a). However, as the popularity
of a file increases, the server initiates swarming by giving
clients only a block of the desired content, along with a
list of peers that can provide other blocks of the same file.
Swarming clients perform two basic functions. First, they
gossip with their peers in order to progressively find other
peers with the content they need. Second, as clients discover
suitable peers, they begin to download the content from
them in parallel (Figure 1b). Overall, the more loaded the
web server becomes, the less content it serves directly to
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Fig. 1. Swarming Delivery

clients and the more it redirects them to peers. During heavy
load, the system generates swarms of peers that cooperatively
download content in parallel from each other and from the
server.

Swarming is a viable content delivery mechanism for the
masses because it is both scalable and economical. Swarming
actually uses scale to its advantage – system capacity in-
creases with the number of peers participating in the system.
Peers spread the load of content delivery over the entire
network and share the burden of peer identification with the
web server; this prevents server overload and avoids network
congestion. Clients utilize parallel download to protect them-
selves against peer instability, which would otherwise hinder
a peer-to-peer application. Swarming is clearly an economical
solution for the web server because it does not have to pay
for the bandwidth used for peer-to-peer communication. This
cost is marginal for the peers because each peer serves only a
small number of clients; the server’s cost is spread among a
large user population. In addition, clients have an incentive to
participate in swarming because they will receive the help of
other peers in return (for the same or different content). This
improves the average performance of all users that otherwise
would suffer from the congested server or network.

While we advocate swarming as a standalone solution, we
note that swarming is complementary to both CDNs and
proxies. Swarming can enable a CDN server to handle a
higher load, and proxies can use swarming to reduce the
load on a standard web server. Furthermore, organizations
that don’t use a CDN can utilize swarming as an alternative
to provisioning their network for peak load.

Swarming delivery has been popularized by several propri-
etary and open-source software projects [1], [12], [8], [21],
[7], of which BitTorrent is perhaps the most well known.
While these systems serve as a proof-of-concept for swarm-
ing delivery, few provide a technical description of their
swarming protocol and, more importantly, no performance
evaluation studies have yet been published. Although swarm-
ing seems intuitive, the design of a swarming protocol is not
trivial because the design space is large and there are many
dynamics involved. Some challenges include (a) finding peers
with the desired content, (b) choosing peers that are likely

to provide good performance, and (c) managing parallel
download while coping with partially available content at
each peer and the dynamics of peer participation.

In this paper, we make the following contributions. First,
we present a comprehensive swarming architecture and ex-
plore the design space of its key components. Second, we
conduct the first comprehensive performance evaluation of
swarming delivery, using a simulation that examines a variety
of workloads and swarming parameters. Our results show
that swarming can scalably deliver content under loads that
are several orders of magnitude beyond what a client-server
architecture can handle. Most impressively, swarming enables
a web server to gracefully cope with a flash crowd, with
minimal effect on client performance. In addition, our results
indicate that swarming spreads the load of content delivery
evenly among the peers. We conclude by providing insight
concerning the dynamic performance of the system and the
impact of several key swarming parameters.

II. RELATED SYSTEMS

BitTorrent is notable as a swarming system because it is
currently used to transfer large files, such as new software
releases, to hundreds of peers. With BitTorrent, a centralized
host called a tracker is responsible for storing the identities
of all peers and their performance. When clients contact the
tracker, they report their status and in return receive a random
list of peers. Clients try to download “rare” blocks first (based
on the blocks their peers have) and download one block at
a time by requesting sub-blocks of their current block from
selected peers. Once a client obtains a complete block, it can
share that block with its peers.

One of the unique features of BitTorrent is its notion of
fairness. Each connection between peers represents a two-
way data transfer, with each peer expected to upload as much
as it downloads. At any given time, each client allows a fixed
number of connections to be actively uploading, with the
goal of obtaining good download performance from those
same peers. If a given peer does not provide good download
performance (i.e. the other side is not sharing equally), then
the client will stop uploading to that peer and try a different
peer.

A number of other peer-to-peer systems attempt to address
the same problem of serving web content to a large audience.
The systems that are most related to swarming are CoopNet
[13] and Pseudoserving [10]. Both of these systems use
collaborative delivery – an overloaded web server gives
clients a list of possible peers, and the client chooses a single
peer from which it downloads the entire content. CoopNet
in particular provides a proof-of-concept for collaborative
delivery that serves as a foundation for swarming. First,
the authors make a convincing argument that bottleneck
bandwidth at the server, rather than the server CPU or
disk speed, is the limiting factor in client-server content
distribution. Second, this work demonstrates that clients are
able to find content using the list of peers, that load is
distributed across the peers, and that clients can find peers
that are “close” (in the same BGP prefix cluster). Finally,
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CoopNet has also been extended to deliver streaming content
[14].

Swarming differs from these systems in several important
ways. First, it uses parallel download, which balances the
load among peers and provides robustness against peers
that leave the system. Second, swarming allows clients to
act as peers even if they only have partial content, which
further increases system capacity. This also allows swarming
to respond more quickly to a flash crowd, especially for
large files. Finally, swarming uses gossiping to progressively
discover available peers, which better distributes control
overhead.

The Backslash system [18] helps a web server cope with
high load by forming a collaborative network of web mirrors.
An overloaded web server then redirects clients to a cached
copy of the content located at one of the collaborating sites.
While this type of system is economical and can improve
the ability of a web server to respond to high loads, it scales
with the number of participating servers, whereas swarming
scales with the number of clients. Moreover, the network
of cooperating sites must be established ahead of time and
benefits only the participating servers.

PROOFS [19] uses a peer-to-peer network of clients to
cache popular content. When a client is unable to download
content from a web server, it queries the peer-to-peer network
to see if any other user has a copy of the desired content.
Like swarming, this type of system scales with the number of
participating clients. However, the peer-to-peer network does
not prevent the web server or the network from becoming
overloaded; rather it serves as a backup after a web server
(or the network) becomes congested. This approach is thus
complimentary to any other content-delivery system, includ-
ing swarming.

All of these systems are affordable alternatives for the sites
that cannot pay for a Content Distribution Network (CDN).
However, even for sites that can afford a CDN, we argue
that swarming provides some advantages. From a content
provider’s point of view, swarming provides automatic and
dynamic content management, whereas a CDN needs addi-
tional mechanisms to manage replication and consistency.
Swarming also has the potential for better load balancing, due
to parallel download. When swarming uses proximity-based
peer selection, it has the potential to further reduce network
load by serving content from peers that are likely to be much
closer than a CDN server. Finally, where a CDN is available,
swarming is complementary in that users can swarm to the
set of CDN mirrors, further improving the scalability of the
overall system.

Our design of swarming draws on two well-known tech-
niques – parallel download and gossiping. Downloading from
multiple web mirrors in parallel [3], [16] has been shown to
reduce client download time while also spreading load among
the mirrors. We borrow this technique to allow clients to
download content from multiple peers in parallel. While the
concept is similar, for swarming the peers may have only
partial content, may disconnect abruptly, and are not as fully
provisioned as a dedicated server. These complications add

significantly to the dynamics of swarming compared to down-
loading from mirrors. The second well-known technique –
gossiping – has primarily been used to maintain consistency,
for example in distributed databases [6], [9] and Peer-to-Peer
storage networks [5]. For swarming we use gossiping as a
scalable method for a client to explore existing peers in a
demand-driven fashion.

III. SWARMING ARCHITECTURE

In order to study swarming performance, we have designed
a swarming architecture consisting of four key components:
swarming initiation, peer identification, peer selection, and
parallel download. While we have not made an explicit
attempt to base this architecture on any existing swarming
protocol, we believe it generalizes the basic content delivery
mechanism used by protocols such as Gnutella and BitTor-
rent.

We note that there are many design choices for each
swarming component, as well as many parameters for the
system. Our goal is to use a simple yet effective design for
each component. This enables us to study the performance of
swarming delivery while minimizing complex dynamics and
interactions among the components of the system. This makes
it easier to correlate an observed behavior to a particular
mechanism or parameter.

Before describing each component in detail, we provide
an overview of the swarming architecture. Our integration
of swarming with a web server can be viewed as a hybrid
between client-server and peer-to-peer content distribution.
The system uses client-server communication to deliver small
or unpopular files, to bootstrap peer location, and to serve as a
fallback in case a client’s known peers all leave the network.
The system uses peer-to-peer networking to scalably deliver
large or popular files and to discover additional peers through
gossiping.

In our architecture we describe swarming as a protocol that
is implemented on top of HTTP, providing backward com-
patibility and allowing for incremental deployment. Because
peers can act as both clients and servers, we define some
basic terminology. We use the term root server to refer to
the server that is the content owner. This could be a regular
HTTP server or a CDN mirror. We refer to a client as a
client peer when it acts as a client and a server peer when
it acts as a server. To participate as a server peer, a node
runs a lightweight HTTP server. It is important to note that
the client may be either a web browser or proxy server. It
should be simple to integrate swarming into existing proxies
because they already include server functionality.

A. Overview

Swarming clients send regular HTTP requests to web
servers, along with two additional headers. The SWARM

header indicates that a client is willing to use swarming, and
the SERVER PEER header indicates that a client is willing
to act as a server peer for the requested file (Figure 2(a)).
For clients that are willing to swarm, the root server may
respond either with the entire file – when load is light – or
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Fig. 2. Protocol Example

may initiate swarming if needed. Servers that are not capable
of swarming will simply ignore the unrecognized headers.

To initiate swarming, a root server gives some clients a
single block of the file and a Gossip Message (Figure 2(b)).
A block is a portion of the file, typically on the order of tens
or hundreds of kilobytes. The server determines the block
size on a per-file basis; our performance evaluation looks at
a range of file and block sizes. A gossip message contains a
list of peers that are willing to serve portions of the same file.
For each server peer, the message lists the peer’s IP address,
a list of blocks the peer is known to have, and a time stamp
indicating the freshness of this information.

When a client receives a swarming response (partial con-
tent plus a gossip message), it invokes a peer selection
strategy to determine the subset of server peers from which it
will download content. A client’s primary concern is to locate
blocks of the file that it has not yet received. The client then
begins downloading blocks from both the root server and the
server peers in parallel. We note that in this study we are
not concerned with fairness. Thus, unlike BitTorrent, data
transfer over a connection is one-way, and we do not attempt
to ensure that a client downloads only as much as it uploads.

Each transaction between a client and the root server or a
server peer includes a single block and a two-way exchange
of gossip messages (Figure 2(c)-(d)). Requesting a single
block at a time will naturally lead to faster peers delivering

more blocks, resulting in proportional load balancing. Ex-
changing gossip messages with server peers enables progres-
sive peer identification – clients gradually learn about other
peers in the peer-to-peer network. This is needed because the
initial pool of peers identified by the root server may refuse
to serve the client, may disconnect from the network, may
have low bandwidth connectivity, or may simply not have
all of the content the client needs. The client uses gossiping
to distribute the overhead of peer identification, rather than
relying on the root server for this functionality. In addition,
since a client is conducting a transaction with a server peer
anyway (to download a block), the additional overhead of
including a gossip message in the transaction is marginal.

When a server peer receives a request for a block, it
determines whether it will accept the connection based on
its configuration or capabilities. The server peer then delivers
the requested block and exchanges gossip messages with the
client. Once the server peer has itself downloaded the entire
file, it may decide to leave the system immediately or it may
choose to linger and help additional client peers. In our study
we use a lingering time of zero, in order to test swarming
under pessimistic conditions; in practice the user may specify
a lingering time or swarming may continue as long as the
browser is left open. When a server peer disconnects from the
system, it does not wait for any ongoing block downloads to
finish. To reduce the amount of bookkeeping that is required,
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clients discard partially downloaded blocks.
As large numbers of clients attempt to download the

same content, they form a dynamic mesh or swarm of
peers. We can view this mesh as a collaborative delivery
system, where server peers with larger portions of the file
or higher bandwidth will tend to serve greater numbers of
clients. We illustrate this in Figure 2(e) by depicting the
download process at each node as a pie with pieces that
are being filled. Downstream peers will generally get pieces
from upstream peers who have received the content earlier.
Similar to application-layer multicast, collaborative delivery
spreads the load of transferring content among the clients
and eliminates bottlenecks at the source or other points in the
network. We note that while cycles may form in the delivery
mesh, individual blocks are propagated along a tree that starts
at the root server.

B. Swarming Initiation

A root server needs to decide when to initiate (or cease)
swarming for a particular file based on its current per-
formance and the popularity of the file. Moreover, while
swarming, the server needs to decide what portion of clients
to give just a single block and how many to serve with the
entire file. The server must balance its desire to reduce load
via redirection with the need to keep enough content available
for swarming delivery to be effective.

For our performance evaluation we have chosen the con-
servative approach of swarming at all times. This enables
the root server to be proactive with regard to load, so that it
doesn’t react too late to a sudden increase in client arrivals.
During a flash crowd, it is conceivable that load on the
server (and its access link) can increase several orders of
magnitude, swamping a server that is slow to respond. The
cost of swarming at all times is that when load is low clients
see increased delay compared to downloading the entire
content from the root server. This occurs because clients may
download from peers that are slower than the root server.

In keeping with this conservative approach, we also have
the root server send a swarming response (partial content
plus a gossip message) to all clients. This represents a
balance between giving clients too little or too much. During
high load, it may be desirable to only give clients a gossip
message, because this will reduce the load on the server to
just redirection overhead. On the other hand, this runs the risk
of not giving the clients enough to share, at which point they
must return to the root server for content anyway. Another
alternative is to give some clients the entire file so that they
can act as server peers for all blocks. However, this benefit is
lost if the lingering time is very short, or in other words if the
peers act selfishly. By giving all clients only partial content,
we force them to cooperate with each other. The content will
naturally diffuse as clients exchange blocks with each other
and with the root server.

C. Peer Identification

A client needs to locate other peers who have its desired
content so that it can use them as server peers. Identifying

potential peers is difficult because the set of peers interested
in the same content is not known ahead of time and can be
highly dynamic (due to client disconnections). This means
we cannot use a distributed hash table [20], [15], [11] to
locate content, but must instead use a more dynamic peer
discovery mechanism. Fortunately, a client does not need to
know about all peers with the content; instead, a client needs
only a few peers with whom it can perform swarming.

For our performance evaluation we use a combination of
server-based identification and gossiping. Having the root
server supply an initial set of peers is a simple method for
bootstrapping the peer identification process. However, we do
not want to rely on this mechanism for all peer identification
(as is done with BitTorrent, CoopNet, and Pseudoserving)
because in a very large scale system even this redirection load
may overwhelm the server. Instead, clients and server peers
gossip during each transaction, allowing clients to quickly
discover a small fraction of the peers and their available
content. This mechanism provides both scalability – the
number of peers discovered is small relative to the total
number – and robustness – a failure or disconnection of one
peer does not affect the ability of a client to discover other
peers. We also note that finding suitable peers becomes easier
(and hence consumes less overhead) as the number of active
peers increases. Of course, if a client is unable to find suitable
peers, it may always return to the server to ask for additional
peers. Finally, it is easy to limit the overhead of gossiping by
limiting the frequency with which nodes exchange messages
and by limiting the size of the gossip message.

Our emphasis in designing the gossip component is to
discover recent peers, since peers may leave the system at any
time. We consider the dynamics of peer participation to be
our primary challenge, even more important than optimizing
bandwidth. Hence, we specify that each client caches a record
for the Nc peers with the most recent time stamp, then
includes in its gossip messages the most recent Ng peers,
where Ng ≤ Nc. In keeping with our philosophy, freshness
takes priority over other concerns (such as caching peers with
large numbers of blocks), since a peer with the entire file is
not useful if it leaves the system. Moreover, the client has
an incentive to exchange fresh peers to ensure that gossiping
diffuses information about peers effectively.

In our design of the gossip component, we are also careful
to share information about peers that are no longer available.
If a client does not do this, then the bad information effec-
tively “pollutes” the peer identification mechanism, causing
many peers to attempt to contact the same disconnected
peer. In our study a client indicates a peer is disconnected
by modifying the peer’s gossip record to indicate the peer
does not have any blocks of the file. The client then shares
this record in its gossip transactions, so that other clients do
not attempt to contact this peer. Eventually the record of a
disconnected peer is discarded because its time stamp will
never be renewed.

Finally, we note that our design uses passive gossiping,
in which clients exchanges gossip messages with server
peers during each transaction. An alternative is to use active
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gossiping, which requires the client to choose a gossip
frequency and then continually contact a new peer during
each round. While information diffuses more slowly with
passive gossiping, the overhead is also much lower, since the
amount of information in the gossip message is usually small
compared to the data that is exchanged.

D. Peer Selection

Once a client has located potential peers, it needs to decide
which peers and how many peers it should use for parallel
download. These are difficult choices because the client does
not know ahead of time the average bandwidth available from
each server peer. In particular, the client does not know if the
bottleneck of the connection will be local or remote.

We do not focus in this study on an optimal peer se-
lection strategy, since there are so many other factors that
affect swarming performance. Rather, we formulate a simple
strategy that is based on content availability. First, each
client limits itself to Nd concurrent downloads. Second, when
choosing a new peer, clients choose the peer that has the
most blocks that it still needs. For example, suppose a client
is downloading a file composed of 4 blocks and the it has
previously downloaded just the 3rd block. It knows about
Peer A who has the 1st and 4th block, and about Peer B
who has the 3rd and 4th block. In this case, the client will
choose Peer A since it has two blocks that the client needs,
while Peer B has only one.

We use this simple strategy because the most important
factor in selecting a peer is the available content at that peer.
This is particularly important for swarming because each peer
has only a part of the file; a client must select among peers
that have blocks the client is currently lacking. It only makes
sense to consider other criteria – such as distance or available
bandwidth – if multiple peers can provide the same content.

When choosing the limit of Nd parallel downloads, clients
must balance several factors. If the client uses a small number
of peers, then it may not fully utilize its incoming link
capacity. If the client uses a large number of peers, then
the extra peers may not necessarily improve performance,
due to a bottleneck near the client. In this latter case,
block download times will increase; due to the instability of
peers, this in turn increases the probability of downloading
incomplete blocks. Because we discard incomplete blocks,
this results in useless work and reduces performance. We
study a range of settings for Nd to determine the impact of
this parameter on performance.

E. Parallel Download

The heart of the swarming architecture is the parallel
download of different blocks from server peers. While
swarming, the client must deal with long-term dynamics and
must determine when to add or drop a peer. In addition,
because the client is using parallel download, it must decide
which blocks to download from which server peer, while
coping with the fact that each peer may potentially have a
different set of blocks.

In our study, we use a relatively simple strategy for
adaptive delivery in order to simplify the analysis of our

results. Each client chooses Nd peers for parallel download,
using the peer selection component, then continues to use this
set unless a server peer disconnects or runs out of blocks that
the client needs. In either of these cases, the client drops
the peer and then immediately invokes the peer selection
component to choose a replacement. If none of the peers
in the client’s gossip cache have blocks that the client needs,
then the client contacts the root server for some additional
peers.

In keeping with our goal of simplicity, we do not monitor
the performance of a server peer to determine whether to
continue using it. Because this could lead to instability, we
instead rely on the benefit of parallel download – faster peers
will naturally serve more blocks to a given client. We also do
not enforce any limit on the number of clients that can use a
particular server peer. Our results indicate that our simple
delivery mechanism spreads load evenly among peers, so
overload of a given peer is not yet a concern. This is likely to
be more important if clients begin using more sophisticated
peer selection mechanisms.

While downloading content, the client would like to keep
its current peers busy to ensure that its throughput is high.
In our study we try to ensure that this is the case by having
the root server choose a relatively large block size. We note
that this choice has several drawbacks. Using too large of a
block size will reduce performance because it increases the
chance of a client getting a partially-downloaded block. We
study the effect of block size in our performance evaluation.

Finally, we note that it is important for the root server to
ensure that a variety of blocks are diffused to clients. If all
clients have the same blocks, then they will all need to return
to the root server for additional data. To mitigate this concern,
in our performance study a client selects a block randomly
from those available when connecting to both the root server
and server peers. This ensures some amount of diversity in
the content that is available, and increases the chance that a
client can find a peer with content that it needs.

IV. PERFORMANCE EVALUATION

We have conducted a simulation-based evaluation of
swarming to study its performance under a variety of work-
loads. Our simulation implements a swarming protocol that
follows the architecture described in the previous section.
In particular, swarming initiation is conservative – swarming
is enabled at all times and the root server sends at least
one block to each client. This first choice ensures that
swarming is able to react to a flash crowd when it appears; the
second choice ensures that the clients have enough content
to share with each other. Peer identification, both by the root
server and through gossiping, is based on freshness and peer
selection is based only on available content. We use a simple
adaptive delivery component in order to avoid introducing
further dynamics in the system; a client stops using a peer
only if it disconnects or runs out of blocks that it needs.

We first describe our simulation methodology. We then
begin our study by demonstrating the scalability of swarming
as compared to a standard web server under a steady-state

27 January 2004 6



UNIVERSITY OF OREGON, COMPUTER AND INFORMATION SCIENCE TECHNICAL REPORT, CIS-TR-2004-1

Parameter Value
Nd (Concurrent downloads) 4
Nc (Size of gossip cache) 64
Ng (Peers in gossip message) 10
Block Size 32 KB

TABLE I

DEFAULT SWARMING PARAMETERS

Internet

Root
Server

Clients/Peers

1 Mbps

1 ms

1 ms

Fig. 3. Simulation Topology

load. Following this, we illustrate how swarming enables a
web server to handle a flash crowd without a significant
performance hit. Next, we examine the performance of
swarming in detail under high load, then study the dynamics
of peer selection. We conclude by investigating the impact
of a variety of parameters: file size, block size, number of
concurrent downloads, and client distribution.

Unless otherwise mentioned, we use the default swarming
parameters given in Table I.

A. Methodology

Evaluating the performance of swarming can be complex
because of the many dynamics involved, such as peer partic-
ipation, partially available content, and changes in available
bandwidth. Moreover, the components of a swarming proto-
col are inter-related; for example, the information carried in
gossip messages affects the peer selection component, which
in turn affects the performance of adaptive delivery. Where
possible we try to study the effect of a parameter in isolation,
for example we investigate the effect of client bandwidth
without dealing with network congestion in the backbone.

For this study we use a simulator based upon some of the
original ns 1.4 code. We built an HTTP server and client on
top of TCP, with swarming integrated into both the server
and client. We have tuned this simulator for scalability, since
we need to evaluate swarming under extremely high loads.

1) Topology: Similar to congestion control studies, we use
a simplified topology in which we model the Internet as a
single router, as shown in Figure 3. This abstraction enables
us to focus on the bottlenecks at the root server and client
peers. The server’s access link is likely to be a bottleneck
under high loads [13] – the very loads for which we are
designing swarming – and peer links are likely to be the
bottleneck when a peer with limited bandwidth acts as a
server peer.

Most of our simulations use the basic scenario shown in
Table II, in which the root server has a 1 Mbps access link

Parameter Value
File size 1 Megabyte
Server bandwidth 1Mbps
Client bandwidth (down/up) 1536Kbps / 128Kbps

TABLE II

BASIC SWARMING SCENARIO

and serves a 1 MB file. In most simulations we model the
clients as broadband users, with a download bandwidth of
1536 Kbps and an upload bandwidth of 128 Kbps. Using a
higher download bandwidth is interesting because this makes
parallel download attractive for a client. In addition, using
a homogeneous set of clients allows us to focus on other
dynamics in the system. In the latter part of this section we
explore the effects of adding some low-bandwidth and some
high-bandwidth clients into the system. In order to focus on
transmission delay, we set the propagation delay of all links
to 1 ms.

2) Workload: We control workloads for our simulations
by varying the arrival rate of clients requesting the same file
from the root server. For a given arrival rate, we randomly
generate client inter-arrival times using an exponential distri-
bution. We also simulate a flash crowd by abruptly increasing
the arrival rate for a given period of time.

When a client arrival occurs, we create a new client and it
immediately begins its download. During the download, the
client acts as a server peer, then it leaves the system once its
download is complete. While in the real world clients may
be somewhat more polite, we opt for a conservative approach
and hence underestimate the benefits of swarming.

Another key factor in determining workload is the file
size. We study various file sizes as well as various block
sizes (given a fixed file size) to determine the effect of these
parameters on system performance.

3) Metrics: Our primary performance metric is client
download time. We also measure the packet loss rate, the
number of clients served by each peer, the number of blocks
served by each peer, and a variety of other swarming-related
metrics.

Unless otherwise indicated, we begin each simulation with
a warm-up period of 500 download completions. During this
time we do not collect measurements; this allows the system
to reach steady state behavior. We then collect data for 5500
download completions.

For each experiment we conduct multiple runs of our simu-
lations, average the results, and compute the 95% confidence
interval. We do not include confidence intervals here because
in all cases they are very small.

B. Scalability

We begin our study by showing that swarming has excel-
lent scalability. In Figure 4, we plot the mean time a client
takes to fully download a file versus the client arrival rate
on a log-log scale. Swarming can clearly handle a much
larger load than a basic web server. As the load increases,
swarming exhibits a linear increase in delay, whereas client-
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server transfer experiences super-exponential growth. Client-
server has a vertical asymptote at about 7 clients per minute,
beyond which it utterly fails to handle the load. Past this
point, the arrival rate exceeds the departure rate, and the client
download time continues to increase indefinitely. Naturally,
the point at which the client-server protocol is unable to
respond will depend on server bandwidth, file size, and load.

We were unable to find any bound for swarming, due to
memory limitations (the largest arrival rate we are able to
simulate is 192 clients per minute). Inevitably, an asymptotic
bound for swarming must exist; at some point the load will
be large enough to prevent the root server from providing
referrals. A back-of-the-envelope calculation suggests this
will not occur for at least an order of magnitude further
increase in arrival rate.2 This limitation exists for any scheme
that relies on contacting a known, central point to initiate a
download. At extremely high loads, swarming can incorpo-
rate a decentralized method for locating peers, such as the
Gnutella search mechanism or PROOFS [19].

From this result we can see that swarming dramatically
increases the steady-state load that a web server can handle.
Serving 192 clients per minute translates to serving the one
megabyte file to more than a quarter million people per
day. This is an impressive feat for a 1Mbps access link.
To serve an equivalent load using a client-server protocol
would require, at a bare minimum, 28Mbps. This would cost
thousands, perhaps tens of thousands, of dollars per month!3

Our conservative approach to swarming does impose a
slight performance penalty under light load. When there are
not many peers to share with, the client ends up getting most
blocks from the root server, but with the added overhead of

2We assume a single 1500-byte packet is used to transmit the referral
information. The 1Mbps server can transmit 220/(1500 ∗ 8) of these per
second, or 5242 per minute.

3http://www.bandwidthsavings.com/servicesdetail.
cfm
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Fig. 5. Client-server reaction to a flash crowd

gossip messages. This seems a small price to pay for such a
significant increase in capacity during high loads. Moreover,
it is likely that we can eliminate this problem by designing
a dynamic server initiation component that uses swarming
only when needed.

C. Flash Crowd

While good steady-state behavior is important, web servers
must also be able to cope with extreme bursts of activity
called flash crowds. We simulate the effect of a flash crowd
by abruptly increasing the arrival rate for a fixed period of
time. We begin by using a one-hour steady state load of 6
clients per minute. For client-server transfer we introduce an
impulse of 12 clients per minute, lasting for one hour. After
the flash crowd passes, the arrival rate returns to its original
level, and we simulate this load until the web server is able
to recover. For swarming, we provide a more challenging
flash crowd by increasing the flash crowd rate to 120 clients
per minute!4 Aside from the load function, we use the same
swarming scenario given in Table II. The results are presented
in Figure 5 and Figure 6, where each data point represents
the mean download time for all downloads finishing in the
previous 1000 seconds.

As can be seen from these figures, swarming enables a
web server to smoothly handle large flash crowds that would
otherwise bring content delivery to a crawl. It maintains
reasonable response times as the crowd arrives, and dissipates
the crowd quickly. With the traditional client-server approach,
the crowd swells due to an inability to service the requests.
This causes a death spiral, as the larger the crowd, the more
difficult it is to service any requests at all. The server will
not recover until long after the arrival rate decreases.

It is particularly impressive that we achieve this result
using a conservative and unoptimized swarming protocol as

4In order to fill out the graph, we ran this simulation for 12,000
completions instead of the usual 6000.

27 January 2004 8



UNIVERSITY OF OREGON, COMPUTER AND INFORMATION SCIENCE TECHNICAL REPORT, CIS-TR-2004-1

1s

10s

1m

10m

1h

10h

0 2 4 6 8 10 12 14

D
ow

nl
oa

d
D

ur
at

io
n

Simulated Arrival Time (hours)

Increased Arrivals�

Fig. 6. Swarming reaction to a flash crowd

detailed in Section III. In particular, the simulated protocol
has swarming enabled at all times and the server continually
delivers blocks to clients as requested. With additional opti-
mization, particularly in the swarming initiation component,
the server should be able to handle even larger flash crowds.
In fact, by utilizing Gnutella or PROOFS to locate peers un-
der extremely high loads, swarming can be made effectively
immune to flash crowds.

D. High Load

Now that we have shown that swarming can provide
greatly increased system capacity, we must examine what
sort of burden it places on the server and the peers. We focus
on a very high load of 192 clients per minute, since this is
the region where packet loss and load imbalance can be the
worst. We again use the scenario from Table II.

With swarming at this heavy load, packet loss at the root
server is quite severe. We stress that the client-server protocol
has virtually 100% packet loss with an order of magnitude
less load. Impressively, swarming still manages to get the file
delivered to clients. Even at this high load, the congestion at
the root server can be relieved by using a server initiation
component that only delivers blocks of the file to a subset of
the clients. This would allow the server to primarily perform
redirection, while serving enough content to ensure it is
available to the clients.

Unlike the server, the peers experience very little packet
loss, even at high load. This is illustrated by the histogram of
peer packet loss rates shown in Figure 7, using a logarithmic
scale.5

The low packet loss rates at the peers can be attributed to
the burden of content delivery being spread evenly among
the peers. In this same high load scenario, roughly 60% of

5Only outbound packet loss is shown in the figure; negligible inbound
packet losses occurred. This is not surprising given the highly asymmetric
bandwidths of the peers.
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the clients serve less than one megabyte. Nearly all of the
clients upload less than two megabytes. Re-serving the file
once or twice is fair, so this behavior is quite good. This result
is shown in Figure 8, which plots a cumulative distribution
function megabytes served by peers. Even if a peer has served
a whole megabyte, it may not have served the whole file,
since it may simply have served the same block many times.
This is one of the strengths of swarming; even a peer with a
small portion of the file can be quite helpful.

The time for a client to complete its download is less
evenly distributed than the amount of data served. For the
high load scenario, the download times are spread mostly
over a range between 60 seconds and 300 seconds. However,
more notably, a disproportionate number of download times
are close to multiples of 60 seconds. This is shown as a
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histogram in Figure 9. This behavior did not manifest at
lower loads such as 16 clients per minute. It is important
to note that the download times are measured individually
from the start of each client; thus, this pattern does not
indicate synchronization of flows within the network. After
some investigation, we were able to confirm that the uneven
distribution is caused by our use of a 60 second time out
to detect dead connections. Undoubtedly, these timeouts are
occurring due to the severe congestion at the server. This
suggests that alleviating the server congestion will also result
in significant improvements for the peers.

E. Dynamics of Peer Selection

To better understand the dynamics of peer selection, we
examine several peer-related metrics under various loads.
We are interested in the number of concurrent downloads
that a client is able to perform, the number of unique peers
that a client downloads from, the number of unique peers
that a client serves, and the total number of peers that a
client attempts to contact. Figure 10 plots these metrics as
a function of increasing load, once again using the basic
scenario given in Table II.

Once the arrival rate reaches 8 clients per minute, the pool
of active clients is large enough that the average number of
concurrent downloads for a client is close to the maximum
of 4. This metric is time-averaged, so for example if a client
spends half the simulation downloading from 3 peers and
half of it downloading from 4, then the average for that peer
is 3.5.

This result also shows that the number of peers a client
attempts to contact increases as the load on the system
increases. At higher loads there are more active peers in the
system, but each peer is downloading at a slower rate. This
means that a client will need to contact more peers to find
the blocks it needs. Accordingly, the number of peers a client
downloads from increases during the region of high load.
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Fig. 10. Dynamics of Peer Selection

Likewise, the number of peers a client uploads to shows the
same behavior.

F. File size

Swarming also scales well with the size of the file, allow-
ing a small user to easily serve large files (e.g. multimedia).
We demonstrate this result in Figure 11, which shows the
mean download time for both swarming and client-server
as a function of the file size. For this simulation we use
an arrival rate of 4 clients per minute, with the same basic
scenario given in Table II. Varying the file size is similar to
varying the arrival rate in that both cases increase the load
on the root server. Swarming again exhibits only a linear
performance hit under high load (large files), and for file
sizes of two megabytes or larger the client-server protocol is
unable to enter steady-state.

An interesting result from this simulation is that gossiping
can impose a significant overhead when the block size is
small. For this simulation the number of blocks is 32,
regardless of file size. Thus as the file size decreases, the
gossip message becomes large relative to the data that is
transferred. This is shown in Figure 11, in the region where
file size is less than 256 KB; the mean download time never
goes below 4 seconds. Despite this overhead, swarming will
eventually outperform client-server for small files as the
arrival rate increases. Nevertheless, this is clear evidence
that swarming web servers can benefit from dynamic server
initiation.

G. Block Size

As can be seen from our discussion of file size, block size
is a key parameter for swarming. To fully explore the effect of
block size on swarming performance we conducted a series of
simulations with varying block and file sizes, using an arrival
rate of 16 clients per minute. Other details of the simulation
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are the same as in Table II. Figure 12 shows the results of
one these simulations, using a file size of 1 megabyte.

From these results we can identify two trends. First,
download time increases as the block size decreases. Recall
that the client first exchanges gossip messages with the root
server or a server peer before requesting a block. The client’s
upload bandwidth is the bottleneck in this exchange. Hence,
as the block size becomes smaller, the transmission delay
incurred by the client transmitting a gossip message becomes
a significant part of the overall delay.

The second trend in these results is that as the block
size increases the download time increases slightly for large
blocks. This is a result of the “last block problem”, which
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Fig. 13. The last block problem for a 1 MB file at 16 clients per minute

occurs when the last block to be downloaded is coming
from a slow source. This causes the download to take a
long time to fully complete, even if most of the file was
transferred quickly. Figure 13 illustrates this effect for a
1 MB file transfer, plotting the percentage of time spent
transferring only the last block. This graph shows that for
a block size of 256 KB the last block consumes 35%
of the download time. BitTorrent solves this problem by
simultaneously downloading the last block from multiple
sources. While this results in redundant data transmission,
it can potentially improve download times.

H. Concurrent Downloads

One interesting question for swarming is whether clients
are able to improve their performance by increasing the
number of concurrent downloads (Nd). We investigate this
swarming parameter in Figure 14 by plotting the mean
download time as a function of Nd, using two different client
arrival rates. The swarming scenario is the basic scenario
given in Table II

Figure 14 shows that increasing concurrency does improve
performance for higher loads because more clients are active.
Just as importantly, increasing Nd does not adversely impact
performance for lower loads. Note that the increase in down-
load time due to the increase in load from 8 to 16 clients per
minute is consistent with Figure 4.

To explore this issue in more depth, we plot the dynamics
of peer selection for this same scenario at 16 clients per
minute. As Figure 15 illustrates, clients are able to download
from a maximum of about 5 peers at a time, despite raising
Nd to 32. Clients do in fact download from (and serve) a
greater number of peers as the concurrency limit is increased;
however, because the number of active peers is generally
about 7 they are unable to find enough active peers with
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their desired content. This indicates that the load is not yet
high enough to fully exploit the level of concurrency we are
allowing. Furthermore, we should see additional concurrency
as we allow peers to have a non-zero lingering time.

I. Client Distribution

With swarming, as with any peer-to-peer system, it is
important to investigate the impact of low-bandwidth users
on client performance, since some peer-to-peer protocols col-
lapse when too many low-bandwidth users enter the system.
For example, the original Gnutella protocol had this flaw. To
address this concern, we conducted a variety of simulations
using different mixtures of clients drawn from three classes:
modem, broadband, and office. Table III lists the bandwidth

Type Downstream Upstream
Office 43Mbps 43Mbps
Broadband 1536Kbps 128Kbps
Modem 56Kbps 33Kbps

TABLE III

CLASSES OF USERS
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of each class of users. We assign each class of users a
different probability, then randomly assign new clients to
one of these classes according to these probabilities. Other
than client bandwidth, the rest of the scenario is the same as
Table II.

Our study shows that swarming behaves well when low-
bandwidth clients interact with higher speed clients. As an
example of our results, Figure 16 plots the mean download
time for broadband and modem users. In this figure, only
broadband and modem users are represented, so as the
percentage of broadband users goes down, the percentage
of modem users goes up.

From this figure, it is clear that broadband users continue
to obtain reasonable performance even as the mix of users is
adjusted. As the percentage of modem users increases from
10% to 99%, the download time for broadband users in-
creases by roughly a factor of two. While this is a significant
increase, the system clearly continues to function well despite
an overwhelming number of low-bandwidth users. We see a
similar result for office users – their mean download time
increases by a factor of 3 for the same changes in the mix
of broadband and modem users. The performance of modem
users is relatively unchanged by large numbers of higher-
speed users because their access link remains a bottleneck.

Our results also demonstrate that broadband users do not
see a significant performance increase when small numbers
of office users participate in swarming. This is a side-effect
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of two aspects of our conservative swarming implementa-
tion. First, we are using a lingering time of zero, so that
office users do not stay around for long periods helping
slower users. Second, clients are not doing any kind of
bandwidth-based peer selection. Introducing this latter mech-
anism should enable clients to take advantage of friendly
office users. At the same time, faster users should be able
to place a cap on the amount of bandwidth they dedicate to
swarming in order to protect both their own performance and
the performance of their local network.

V. CONCLUSIONS & FUTURE WORK

Our results show that swarming scales with offered load
up to several orders of magnitude beyond what a basic web
server can manage. This is an important result, given swarm-
ing’s popularity in peer-to-peer file-sharing systems. Most
impressively, swarming responds quickly to flash crowds,
with only a slight increase in download time during the crowd
and a rapid return to lower download times once the system
returns to steady state. These results confirm that swarming is
an excellent choice for the distribution of multimedia content
and software updates.

A closer examination of swarming under heavy load
indicates that swarming evenly distributes load among the
peers and does not cause significant packet loss at the peers.
Operating at high load can cause significant packet loss
for the root server, but swarming is still able to operate
effectively during this time.

We have also examined a number of key swarming pa-
rameters. We find that swarming is sensitive to block size,
with blocks on the order of 16 to 32 KB providing good
performance for larger file sizes. Swarming also performs
well across various combinations of client bandwidth. In
particular, low-speed users will naturally decrease swarming
performance for broadband users but will not introduce
significant problems.

From a practical perspective, swarming does have some
drawbacks. Because it may potentially use many TCP con-
nections, swarming may steal bandwidth from regular client-
server applications. Creating a mechanism for swarming, and
other peer-to-peer applications, to share more evenly is an
open research problem. In addition, swarming, like many
peer-to-peer applications, faces deployment difficulties when
users employ Network Address Translation (NAT), because
NAT does not allow for incoming connections without special
manual configuration. While various mechanisms can work
around this difficulty, it becomes more difficult when two
peers use NAT.

Finally, our study lays the groundwork for future research
in many interesting areas. Of particular concern is reducing
congestion at the root server during high load. A server
should be able to switch almost completely to redirection dur-
ing high load, since many peers will have content to server.
Likewise, a dynamic server initiation component should be
able to decide when to use client-server transfer (for small
unpopular files) and when to use swarming (for large or

popular files). Other avenues of research include bandwidth-
based and distance-based peer selection, dynamic adjustment
of the number of concurrent downloads, peer performance
monitoring, and more efficient gossiping. We also plan to
explore additional scenarios for swarming, such as non-
cooperative peers and the effects of some peers lingering for
a long time after their download is complete.
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