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Abstract— This paper presents a detailed examination of how random process. Most popular P2P systems in use today be-
the dynamic and heterogeneous nature of real-world peer-to-peer |ong to this unstructured category. For structured P2P systems

systems can introduce bias into the selection of representative such as Chord [1] and CAN [2], knowledge of the structure
samples of peer properties €.g, degree, link bandwidth, number ’

of files shared). We propose theMetrapolized Random Walk with significantly facilitates unbiased sampling as we discuss in

Backtracking (MRWB) as a viable and promising technique for Section VII.
collecting nearly unbiased samples and conduct an extensive Achieving the basic objective of selecting any of the peers

simulation study to demonstrate that our technique works present with equal probability is non-trivial when the structure
well for a wide variety of commonly-encountered peer-to-peer ¢ ihe peer-to-peer system changes during the measurements.

network conditions. We have implemented the MRWB algorithm First fi t studi fPop ¢ tpicall
for selecting peer addresses uniformly at random into a tool called ' 'St-g€neration measurement studies o systems typically

i on- sanpl er . Using the Gnutella network, we empirically show relied on ad-hoc sampling techniquesg, [3], [4]) and pro-

that i on- sanpl er yields more accurate samples than tools vided valuable information concerning basic system behavior.
that rely on commonly-used sampling techniques and results in However, lacking any critical assessment of the quality of these
dramatic improvements in efficiency and scalability compared to sampling techniques, the measurements resulting from these
performing a full crawl. studies may be biased and consequently our understanding of

Index Terms— Peer-to-peer, Sampling P2P systems may be incorrect or misleading.

The main contributions of this paper dipa detailed exam-
ination of the ways that the topological and temporal qualities
of peer-to-peer systems (e.g., churn [5]) can introduce (igas,

The popularity and wide-spread use of peer-to-peer systegsin-depth exploration of the applicability of a sampling tech-
has motivated numerous empirical studies aimed at providiﬁghue called thévletropolized Random Walk with Backtracking
a better understanding of the properties of deployed pe@iiRwWB) representing a variation of the Metropolis—Hastings
to-peer systems. However, due to the large scale and higi{gthod [6]-[8], and(iii) an implementation of the MRWB
dynamic nature of many of these systems, directly measuriggorithm into a tool called on- sanpl er . While sampling
the quantities of interest on every peer is prohibitively expefschniques based on the original Metropolis—Hastings method
sive. Sampling is a natural approach for learning about tha$g,e been considered earlier (e.g., see Awamal. [9] and
systems using light-weight data collection, but commonlysay-yossef and Gurevich [10]), we show that in the context
used sampling techniques for measuring peer-to-peer systejpginstructured P2P systems, our modification of the basic
tend to introduce considerable bias for two reasons. First, %tropolis—Hastings method results in nearly unbiased sam-
dynamic nature of peers can bias results towards short-liv|§|@S under a wide variety of commonly encountered peer-to-
peers, much as naively sampling flows in a router can Ieﬁger network conditions.
to bias towards short-lived flows. Second, the heterogeneousgpe proposed MRWB algorithm assumes that the P2P
nature of the overlay topology can lead to bias towards higg‘ystem provides some mechanism to query a peer for a list
degree peers. of its neighbors — a capability provided by most widely

In this paper, we are concerned with the basic objectiyRployed P2P systems. Our evaluations ofitha- sanpl er
of devising an unbiased sampling methag,., one which too] shows that the MRWB algorithm yields more accurate
selects any of the present peers with equal probability. TRgmples than previously considered sampling techniques. We
addresses of the resulting peers may then be used as inintify the observed differences, explore underlying causes,
to another measurement tool to collect data on particulggdress the tool's efficiency and scalability, and discuss the
peer propertiese(g, degree, link bandwidth, number of filesimplications on accurate inference of P2P properties and high-
shared). The focus of our work is onnstructured P2P  figelity modeling of P2P systems. While our focus is on P2P
systems, where peers select neighbors through a predominapiivorks, many of our results apply to any large, dynamic,

. . . . _ undirected graph where nodes may be queried for a list of
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and then gather data about the desired properties from th@senponent of efficient, randomized algorithms [19]. However,
peers. While it is relatively straightforward to choose peethese studies assume complete knowledge of the graphs in
uniformly at random in a static and known environment, fjuestion. Our problem is quite different in that we do not
poses considerable problems in a highly dynamic setting likeow the graphs in advance.

P2P systems, which can easily lead to significant measuremeni closely related problem to ours is sampling Internet
bias for two reasons. routers by running traceroute from a few hosts to many

The first cause of sampling bias derives from the tempomdéstinations for the purpose of discovering the Internet’s
dynamics of these systems, whereby new peers can arrive amater-level topology. Using simulation [20] and analysis [21],
existing peers can depart at any time. Locating a set of peegsearch has shown that traceroute measurements can result
and measuring their properties takes time, and during that timemeasurement bias in the sense that the obtained samples
the peer constituency is likely to change. In Section Ill, weupport the inference of power law-type degree distributions
show how this often leads to bias towards short-lived pedrsespective of the true nature of the underlying degree dis-
and explain how to overcome this difficulty. tribution. A common feature of our work and the study of

The second significant cause of bias relates to the cdhe traceroute technique [20], [21] is that both efforts require
nectivity structure of P2P systems. As a sampling prograam evaluation of sampling techniques without complete knowl-
explores a given topological structure, each traversed linkagge of the true nature of the underlying connectivity structure.
more likely to lead to a high-degree peer than a low-degréefowever, exploring the router topology and P2P topologies
peer, significantly biasing peer selection. We describe adifer in their basic operations for graph-exploration. In the
evaluate different techniques for traversing static overlays ¢ase of traceroute, the basic operation is “What is the path
select peers in Section IV and find that the Metropolized this destination?” In P2P networks, the basic operation
Random Walk (MRW) collects unbiased samples. is “What are the neighbors of this peer?” In addition, the

In Section V, we adapt MRW for dynamic overlays byinternet’s router-level topology changes at a much slower rate
adding backtracking and demonstrate its viability and effethan the overlay topology of P2P networks.
tiveness when the causes for both temporal and topologicaAnother closely related problem is selecting Web pages
bias are present. We show via simulations that the MRWihiformly at random from the set of all Web pages [22],
technique works well and produces nearly unbiased samp|28]. Web pages naturally form a graph, with hyper-links
under a variety of circumstances commonly encountered fairming edges between pages. Unlike unstructured peer-to-
actual P2P systems. peer networks, the Web graph dsrectedand only outgoing

Finally, in Section 6 we describe the implementation of thienks are easily discovered. Much of the work on sampling
i on- sanpl er tool based on the proposed MRWB algorithnWeb pages therefore focuses on estimating the number of
and empirically evaluate its accuracy and efficiency throughcoming links, to facilitate degree correction. Unlike peers in
comparison with complete snapshots of Gnutella taken wigleer-to-peer systems, not much is known about the temporal
Cruiser [12], as well as with results obtained from previouskstability of Web pages, and temporal causes of sampling bias
used, more ad-hoc, sampling techniques. Section VII discusbese received little attention in past measurement studies of
some important questions such as how many samples to colkbet Web.
and outlines a practical solution to obtaining unbiased samples
Lor structurgq P2P sy§tems. Section VIII concludes the pa@r Random walk-based sampling of graphs

y summarizing our findings and plans for future work.
A popular technique for exploring connectivity structures
Il. RELATED WORK consist_s of performing random walks on graphs. Sevgral
properties of random walks on graphs have been extensively
studied analytically [24], such as the access time, cover time,

The phrase “graph sampling” means different things in digknd mixing time. While these properties have many useful
ferent contexts. For example, sampling from a class of grapdysplications, they are, in general, only well-defined for static
has been well studied in the graph theory literature [13], [14)raphs. To our knowledge the application of random walks
where the main objective is to prove that for a class of graphs a method of selecting nodes uniformly at random from a
sharing some propertye(g, same node degree distribution)dynamically changingraph has not been studied.

a given random algorithm is capable of generating all graphsA number of papers [25]-[28] have made use of random
in the class. Coopeet al. [15] used this approach to showwalks as a basis for searching unstructured P2P networks.
that their algorithm for overlay construction generates graph®wever, searching simply requires locating a certain piece
with good properties. Our objective is quite different; insteadf data anywherealong the walk, and is not particularly

of sampling a graph from a class of graplesir concern is concerned if some nodes are preferred over others. Some stud-
sampling peers (i.e., vertices) from a largely unknown arids [27], [28] additionally use random walks as a component
dynamically changing graph of their overlay-construction algorithm.

Others have used sampling to extract information aboutTwo papers that are closely related to our random walk-
graphs €.g, selecting representative subgraphs from a largeased sampling approach are by Avedral. [9] and Bar-Yossef
intractable graph) while maintaining properties of the originand Gurevich [10]. While the former also address the problem
structure [16]-[18]. Sampling is also frequently used as & gathering uniform samples from peer-to-peer networks, the

A. Graph sampling



latter are concerned with uniform sampling from a seardh Dynamic graphs

engine’s index. Both works examine several random walk\ypile graph theory has been largely concerned with study-
techniques, including the Metropolis-Hastings method, biify anq discovering properties of static connectivity structures,
assume an underlying graph structure that is not dynamicalitny real-world networks evolve over time, for example via
changipg. In addition to evaluating their techniques empirical]yode/edge addition and/or deletion. In fact, many large-scale
for static power-law graphs, the approach proposed by Atan, gy orks that arise in the context of the Internet (e.g., WWW,

al. [9] also requires special underlying support from the peggop sysiems) are extremely dynamic and create havoc for
to-peer application. In contrast, we implement the MetropoliE—

g _ P "graph algorithms that have been designed with static or only
Hastings method in such a way that it relies only on the abilifyy, gjowly changing network structures in mind. Furthermore,

to discover a peer's neighbors, a simple primitive operatiqe gevelopment of mathematical models for evolving graphs
commonly found in existing peer-to-peer networks. Moreoveg gijj| at an early stage and is largely concerned with gener-
we introduce backtracking to cope with departed peers agfl/e models that are capable of reproducing certain observed
conduct a much more extensive evaluation of the proposgdhyerties of evolving graphs. For example, recent work by
MRWB method. Specifically, we generalize our formulatiop gsyovecet al.[35] focuses on empirically observed properties
reported in [11] by evaluating MRWB over dynamicallys,ch as densification.é. networks become denser over time)
changing graphs with a variety of topological properties. W4 shrinking diameteii.¢., as networks grow, their diameter

also perform empirical validations over an actual P2P netwo%creases) and on new graph generators that account for these

properties. However, the graphs they examine are not P2P
networks and their properties are by and large inconsistent
with the design and usage of measured P2P networks (e.qg.,
see [5]). Hence, the dynamic graph models proposed in [35]

The problem of obtaining accurate estimates of the numigdg Not appropriate for our purpose, and neither are the
of peers in an unstructured P2P network that have a cert§)P!Ving graph models specifically designed to describe the
property can also be viewed as a problem in studying the si2¥EP 9raph (e.g., see [36] and references therein).
of hidden populationsFollowing Salganik [29], a population
is called “hidden” if there is no central directory of all [1l. SAMPLING WITH DYNAMICS

population members, such that samples may only be gatheregye geyelop a formal and general model of a P2P system as
through referrals from existing samples. This situation oftgg|iows. If we take an instantaneous snapshot of the system at
arises when public acknowledgment of membership has repgtiec + we can view the overlay as a graghV, E) with the
cussions €.g, injection drug users [30]), but also arises if th@yeers as vertices and connections between the peers as edges.
target populatlor_w is d|ff|cu_lt_to distinguish from the pOpUIat'O'Extending this notion, we incorporate the dynamic aspect by
as a whole &.g, jazz musicians [29]). Peers in P2P network§ieying the system as an infinite set of time-indexed graphs,
are hidden because there is no central repository we can QUeY— G(V;, E,). The most common approach for sampling

for a list of all peers. Peers must be discovered by queryiggm this set of graphs is to define a measurement window,

C. Sampling in hidden populations

other peers for a list of neighbors. [to.to + A], and select peers uniformly at random from the
Proposed methods in the social and statistical sciences et of peers who are present at any time during the window:
studying hidden populations inclugmowball samplind31], Vio torA = ig{)ﬁ V;. Thus, it does not distinguish between

key informant samplind32], and targeted sampling[33]. occurrences of the same peer at different times.
While these methods gather an adequate number of sampleshis approach is appropriate if peer session lengths are
they are notoriously biased. More recently, Heckathorn [3@kponentially distributed.g., memoryless). However, existing
(see also [29], [34]) propose#spondent-driven sampling measurement studies [3], [5], [37], [38] show session lengths
snowball-type method for sampling and estimation in hiddegte heavily skewed, with many peers being present for just
populations. Respondent-driven sampling first uses the sam@l&hort time (a few minutes) while other peers remain in
to make inferences about the underlying network structut@e system for a very long time.€. longer thanA). As
In a second step, these network-related estimates are Ué&ﬁbnsequence, as increases, the sét,, ;.. A includes an
to derive the proportions of the various subpopulations @fcreasingly large fraction of short-lived peers.
interest. Salganikt al.[29], [34] show that under quite general A simple example may be illustrative. Suppose we wish to
assumptions, respondent-driven sampling yields estimates d@kerve the number of files shared by peers. In this example
the sizes of Subpopulations that are asymptotically unbiasg9stem, half the peers are up all the time and have many
no matter how the seeds were chosen. files, while the other peers remain for around 1 minute and
Unfortunately, respondent-driven sampling has only beame immediately replaced by new short-lived peers who have
studied in the context where the social network is static amel files. The technique used by most studies would observe
does not change with time. To the best of our knowledge, thiee system for a long timeX) and incorrectly conclude that
accuracy of respondent-driven sampling in situations where tm®st of the peers in the system have very few files. Moreover,
underlying network structure is changing dynamically (e.gtheir results will depend on how long they observe the system.
unstructured P2P systems) has not been considered in The longer the measurement window, the larger the fraction
existing sampling literature. of observed peers with few files.



One fundamental problem of this approach is that it focusé®nsitioning to peey if the walk is currently at peet:
on samplingpeersinstead ofpeer propertieslit selects each P B W y is a neighbor of x
sampled vertex at most once. However, the property at the (z,y) = 0 otherwise
vertex may change with time. Our goal should not be to select

to+A
a vertexv; € (J,2;" V4, but rather to sample the property,
at v; at a particular instant. Thus, we distinguish between
occurrences of the same peer at different times: samples
andv; ,» gathered at distinct times# ¢’ are viewed as distinct,
even vv_hen they come from the same pdee key difference 8articular nodeg, converges to atationary distribution
is that it must be possible to sample from the same peer more degreer)
than once, at different points in timélsing the formulation m(z) = lim (vP")(z) = . B
viy € Vi, t € [to, to + AJ, the sampling technique will not be e 2-|E|
biased by the dynamics of peer behavior, because the san] |8the_r yvords, if we select a peer as a sample eves;epg, _
set is decoupled from peer session lengths. To our knowled 'suff|C|entIy larger, we have the following good properties:

. . ) ; + The information stored in the starting vectat, is lost,
no prior P2P measurement studies relying on sampling make . .
this distinction. through the repeated selection of random neighbors.

. . . Therefore, there is no correlation between selected peers.
Returning to our simple example, our approach will cor-

. . ) Alternately, we may start many walks in parallel. In either
rectly select long-lived peers half the time and short-lived Y y y P

. X .~ cases, after steps, the selection is independent of the
peers half the time. When the samples are examined, they will origin P P
EhOW that h‘?llf of tPLe_I peherI? |r; :E:e systemhat ar}y g|¥|en morTer:wt_ While the stationary distributiorns (), is biased towards
isagargt?;)(/:olrreescrv e hall of the peers have few files, whic peers with high degree, the bias is precisely known,
) allowing us to correct it.
If the measurement windowy) is sufficiently small, such Rando?n walks may visit the same peer twice, which
that the distribution of the property under consideration does ’

St - ) lends itself better to a dynamic setting as described in
not change significantly during the measurement window, then  gaction 111

we may relax the constraint of ChOOSiﬂgnifOI‘mly at random In practice’T need not be exceptiona”y |arge_ For graphs
from [to, to + A]. where the edges have a strong random compoeemt $mall-

We still have the significant problem of selecting a peetorld graphs such as peer-to-peer networks), it is sufficient
uniformly at random from those present at a particular timeénhat the number of steps exceed the log of the population size,
We begin to address this problem in the next section. i.e, > O(log |V]).

Adjusting for degree bias To correct for the bias towards
high degree peers, we make use of the Metropolis—Hastings
method for Markov Chains. Random walks on a graph are a
We now turn our attention to topological causes of biaspeci_a_l case Of Markov Chains. In & regullar rando_m yvaII§, the
F’%Tnsmon matrix P(x,y) leads to the stationary distribution

If the vectorv describes the probability of currently being
each peer, then the vectdr= v P describes the probability
after taking one additional step. LikewiseP” describes the
probability after takingr steps. As long as the graph is
connected and not bipartite, the probability of being at any

IV. SAMPLING FROM STATIC GRAPHS

Towardz this enq, we T?mema;'ly set aS|deh tr_:_i temlpogr x), as described above. We would like to choose a new
ISSUES Dy assuming a static, unchanging grapn. the se ecgg%sition matrix,Q(z,y), to produce a different stationary

process begins with knowledge of one peer (vertex) an Ktribution, u(z). Specifically, we desireu(z) to be the

progressively queries peers for a list of neighbors. The goalul iform distribution so that all peers are equally likely to be

to select peers uniformly at random. In any graph—explorati%@ the end of the walk. Metropolis—Hastings [6]{8] provides
problem, we have a set of visited peers (vertices) and a frorg with the desiredg(x. Y):

of unexplored neighboring peers. There are two ways in whi(l:Jh
algorithms differ:(i) how to chose the next peer to explore, Qz,y) = P(z,y) min (%, 1) if x £y,
and(ii) which subset of the explored peers to select as samples. Y 1— Z#m Q(z, 2) ifz=y

Prior studies use simple breadth-first or depth-first approaCheEquivalently, to take a step from peer select a neighbor

to explore the graph and select all explored peers. Thegs%f 2 as normal (e, with probability P(z,y)). Then, with

approaches suffer from several problems: . . (p(y)P(y,m) ) ;
« The discovered peers are correlated by their neighb%rr()bab'“tyHnn u()Pay) 1 ) 8ccept the move. Otherwise,

relationship. return tox (i.e., with probabilityl — -, Q(z, 2)).
« Peers with higher degree are more likely to be selected. To collect uniform samples, we ha%(% = 1, so the move-
. Because they never visit the same peer twice, the@gceptance probability becomes:
will introduce bias when used in a dynamic setting as . (u(y)P(y,:z:) 1> . <degreéz) 1)
described in Section llI. w(z)P(z,y) ) degre¢y)’
Random Walks: A better candidate solution is the randonTherefore, our algorithm for selecting the next step from some
walk, which has been extensively studied in the graph theqsgerz is as follows:

literature (for an excellent survey see [24]). We briefly sum- « Select a neighbog of x uniformly at random.
marize the key terminology and results relevant to sampling.e Queryy for a list of its neighbors, to determine its degree.
The transition matrixP(z,y) describes the probability of « Generate a random valug, uniformly between 0 and 1.
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Fig. 1: Bias of different sampling techniques; after collectihg|V'| samples. The figures show how many peersXis) were selected
times.

Erdos—Reényi Gnutella Watts—Strogatz  Barabasi—Albert
Breadth-First Search 4.54-10~* 2.73.1073 47373 2.77-1073
Random Walk 3.18 - 10— 1.57-1073 7.647° 2.84-1073
Metropolis—Hastings 5.97-10~°  5.79-10~° 6.0875 5.22-107°

TABLE I: Kolmogorov-Smirnov test statistic for techniques over static graphs. Values alisve10~* lie in the rejection region at the
5% level.

o Ifp< gzgigg y is the next step. showing that Metropolis—Hastings appears to generate uniform
o Otherwise, remain at as the next step. samples over each type of graph, while the other techniques
We call this the Metropolized Random Walk (MRW). Qualifajl to do so by a wide margin.
tatively, the effect is to suppress the rate of transition to peersrigure 1 explores the results visually, by plotting the number
of higher degree, resulting in selecting each peer with equstliimes each peer is selected. If we selectl’| samples, the
probability. typical node should be selectédimes, with other nodes being
Evaluation: Although [6] provides a proof of correctness folselected close td: times approximately following a normal
the Metropolis—Hastings method, to ensure the correctnessg@tribution with variance:.2 We used: = 1,000 samples. We
our implementation we conduct evaluations through simulatiglso include an “Oracle” technique, which selects peers uni-
over static graphs. This additionally provides the opportformly at random using global information. The Metropolis—
nity to compare MRW with conventional techniques such a$astings results are virtually identical to the Oracle, while the
Breadth-First Search (BFS) or naive random walks (RW) wiither techniques select many peers much more and much less
no adjustments for degree bias. thank times. In the Gnutella, Watts—Strogatz, and Barabasi—
To evaluate a technique, we use it to collect a large numbgbert graphs, Breadth-First Search exhibits a few vertices that
of sample vertices from a graph, then perform a goodnesge selected a large number of times {0, 000). The (not-
of-fit test against the uniform distribution. For Breadth-Firs§djusted) Random Walk (RW) method has similarly selected
Search, we simulate typical usage by running it to gathergafew vertices an exceptionally large number of times in the
batch of 1,000 peers. When one batch of samples is collectgfhutella and Barabasi—Albert models. The Oracle and MRW,
the process is reset and begins anew at a different startiiigcontrast, did not select any vertex more than around 1,300
point. To ensure robustness with respect to different kingges.
of connectivity structures, we examine each technique overp summary, the Metropolis—Hastings method selects peers
several types of graphs as follows: uniformly at random from a static graph. The next section
» Erdos—Renyi: The simplest variety of random graphs g, amines the additional complexities when selecting from
« Watts-Strogatz: “Small world” graphs with high clus- 5 qynamic graph, introduces appropriate modifications, and

tering ,ar?d low path Iengths_ .. evaluates the algorithm’s performance.
o Barabasi—Albert: Graphs with extreme degree distribu-

tions, also known as power-law or scale-free graphs
« Gnutella: Snapshots of the Gnutella ultrapeer topology, V. SAMPLING FROM DYNAMIC GRAPHS

captured in our earlier work [39] Section Il set aside topological issues and examined the
To make the results more comparable, the number of Vefynamic aspects of sampling. Section IV set aside temporal

tices (V| = 161,680) and edges| €| = 1,946,596) in each jsgyes and examined the topological aspects of sampling. This
graph are approximately the sam@able | presents the resultssection examines the unique problems that arise when both

of the goodness-of-fit tests after collectib@00 - [V'| samples, temporal and topological difficulties are present.

IErdos_Rényi graphs are generated based on some probabifst any Our hypothesis is that a Metropolis—Hastings random walk

edge may exist. We set = 2L~ so that there will be close (| will yield approximately unbiased samples even in a dynamic
edges, though the exact value may vary slightly. The Watts—Strogatz model

require that|E| be evenly divisible byV|, so in that model we usgF| = 2Based on the normal approximation of a binomial distribution wyith=

1, 940, 160. e andn = k|V|.

VI



environment. Simulation results testing this hypothesis aend that fundamental property exhibits bias. For example,
later in this section and empirical tests are in the next sectiamhen sampling the number of files shared by each peer, there
The fundamental assumption of Metropolis—Hastings is thatay be sampling bias if the number of files is correlated with
the frequency of visiting a peer is proportional to the peer&ession lengtland sampling is biased with respect to session
degree. This assumption will be approximately correct if petamgth. One could also imagine the number of files being
relationships change only slightly during the walk. On oneorrelated with query latency (which is very loosely related
extreme, if the entire walk completes before any graph chandesthe peer bandwidth). However, sampling the number of
occur, then the problem reduces to the static case. If a singlared files cannot be biased independently, as it does not
edge is removed mid-walk, the probability of selecting the twinteract with the walk. To show that sampling is unbiased
affected peers is not significantly affected, unless those pefns any property, it is sufficient to show that it is unbiased
have very few edges. If many edges are added and remofedthe fundamental properties that interact with the sampling
during a random walk, but the degree of each peer does tethnique.

change significantly, we would also expect that the probability

of selecting each peer will not change significantly. In peef. coping with Departing Peers

to-peer systems, each peer actively tries to maintain a numbeb . . - . .
: o . eparting peers introduce an additional practical consider-
of connections within a certain range, so we have reason 1o

believe that the degree of each peer will be relatively stable?rt'llon' The walk may try to query a peer that IS no longer
resent—-a case where the behavior of the ordinary random

practice. On the other hand, it is quite possible that in a h'gr\@yalk algorithm is undefined. We employ a simple adaptation

dynamic environment, or for certain degree distributions, ﬂ%e L : .
. . . . 0,mimic an ordinary random walk on a static graph as closely
assumptions of Metropolis—Hastings are grossly violated and

it fails to gather approximately unbiased samples. as possible, by maintaining a stack of visited peers. When the

: ... walk chooses a new peer to query, we push the peer’s address
The fundamental question we attempt to answer in this sec- .
on the stack. If the query times out, we pop the address off the

tion is: Under what conditions does the Metropolis—Hastings ack, and choose a new neighbor of the peer that is now on top

random walk fail to gather approximately unbiased samples.f the stack. If all of a peer's neighbors time out, we re-query

If there is any bias in the samples, the bias will be tIeﬁ’uat peer to get a fresh list of its neighbors. If the re-query

to some property that interacts with the walk. Put anothe .
. . : : also times out, we pop that peer from the stack as well, and
way, if there were no properties that interacted with the . .
. . so on. If the stack underflows, we consider the walk a failure.

walk, then the walking process behaves as it would on

. ) We do not count timed-out peers as a hop for the purposes of
static graph, for which we have a proof fro”? graph theor}[ﬁeasuring the length of the walk. We call this adaptation of the
Therefore, we are only worried about properties which cau W sampling technigue thidetropolized Random Walk with
the walk to behave differently. We identify the following threeB . . )
fundamental properties that interact with the walk: acktracking (MRWBmethod for sampling from dynamic

. Degree: pthg number of neighbors of each peer. Theraphs. Note that when applied in a static environment, this

Metropolis—Hastings method is a modification of a reghethod reduces to MRW.
ular random walk in order to correct for degree-bias as
described in Section IV. It assumes a fixed relationshi. Evaluation methodology

between degree and the probability of visiting a peer. |y the static case, we can rely on graph theory to prove the

If the Metropolis—Hastings assumptions are invalid, th&ccuracy of the MRW technique. Unfortunately, graph theory

degree-correction may not operate correctly, introducing not well-suited to the problem of dynamically changing

a bias correlated with degree. graphs. Therefore, we rely on simulation rather than analysis.

» Session lengths: how long peers remain in the systemye have developed a session-level dynamic overlay simulator

Section IIl showed how sampling may result in a biaghat models peer arrivals, departures, latencies, and neighbor

based on session length. If the walk is more likely teonnections. We now describe our simulation environment.

select either short-lived or long-lived peers, there will be The |atencies between peers are modeled using values from

a bias correlated with session length. the King data set [40]. Peers learn about one another using one

« Query latency: how long it takes the sampler to querysf severalpeer discoverymechanisms described below. Peers

a peer for a list of its neighbors. In a static environmeipgye a target minimum number of connections.(degree)

the only notion of time is the number of steps taken byt they attempt to maintain at all times. Whenever they

the walk. In a dynamic environment, each step requirggye fewer connections, they open additional connections. We

querying a peer, and some peers will respond MOx&sume connections are TCP and require a 3-way handshake

quickly than others. This could lead to a bias correlatgghfore the connection is fully established, and that peers will

with the query latency. In our simulations, we model thgme out an attempted connection to a departed peer after 10

query latency as twice the round-trip time between thgsconds. A new peer generates its session length from one of
For c?t?]rgrpIg)régernggoepgrr;%;hia?gglrir?gelgi%\ sqlégﬁeghly arise if t everal different session Ie_ngth distributic_)ns described beloyv

. . ' . Afd departs when the session length expires. New peers arrive
desired property is correlated with a fundamental pmpemgécording to a Poisson process, where we select the mean peer

3L RTT for the SYN, 3 RTT for the SYN-ACK, 1 RTT for the ACK and arrival rate based on the session length distribution to achieve

the request, and RTT for the reply. a target population size of 100,000 peers.
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Fig. 2: Comparison of sampled and expected distributions. They are visually indistinguishable.

100 explore the most interesting portion of this parameter space.
80— Towards this end, we begin with a base case of parameters
S oo as a starting point and examine the behavior of MRWB under
(Lo; . those conditions. In the following subsections, we vary the
g 10 parameters and explore how the amount of bias varies as a

20 — function of each of the parameters. As a base case, we use the
0 ‘ ‘ ‘ ‘ following configuration:
0 Ti1n01e since sta?toof samplin 3?5) 40 Session length distribution:  Weibull= 0.59, A = 40)
ping Target degree: 15
Fig. 3: Distribution of time needed to complete a random walk ~ Maximum degree: 30
(simulated) Peer discovery mechanism: FIFO

TABLE II: Base Case Configuration

To query a peer for a list of neighbors, the sampling node
must set up a TCP connection, submit its query, and receive &igure 2 presents the sampled and expected distributions
response. The query times out if no response is received af@r the three fundamental properties: degree, session length,
10 secondé.We run the simulator for a warm-up period toand query latency. The fact that the sampled and expected
reach steady-state conditions before performing any rand@igtributions are visually indistinguishable demonstrates that
walks. the samples are not significantly biased in the base case.

Our goal is to discover if random walks started under To efficiently examine other cases, we introducienmary
identical conditions will select a peer uniformly at randonftatisticto quickly capture the difference between the sampled
To evaluate this, we start 100,000 concurrent random walkgd expected distributions, and to provide more rigor than
from a single location. Although started at the same tim@, purely visual inspection. For this purpose, we use the
the walks will not all complete at the same tif&Ve chose Kolmogorov-Smirnov (KS) statisticD, formally defined as
to use 100,000 walks as we believe this is a much larg@llows. Where S(x) is the sampled cumulative distribution
number of samples than most researchers will use in practii#ction and E(z) is the expected cumulative distribution
If there is no discernible bias with 100,000 samples, we cé#nction from the perfect snapshot, the KS statistic is:
conclude that the tool is unbiased for the purposes of gathering D = max (|S(z) — E(z)|)

fewer samplesife., we cannot get more accuracy by using les$, siher words, if we plot the sampled and expected CDFs,
precision). Figure 3 shows the distribution of how long walks) i the maximum vertical distance between them and has
take to complete in one simulation using 50 hops per walg, possible range of0, 1]. For Figures 2a, 2b, and 2c, the
illustrating that most walks take 10-20 seconds to comple{gy,aq oD were 0.0019, 0.0023, and 0.0037, respectively. For
In the simulator the walks do not interact or interfere Wit%omparison, at the — 0.05 significance level,D is 0.0061,
one another in any way. Each walk ends and collects g} 4o two-sample KS statistic with 100,000 data points each.
independent sample_. _— However, in practice we do not expect most researchers to
. As an expected distribution, we capture a perfect _?napS@%tther hundreds of thousands of samples. After all, the initial
(i-e, using an oracle) at the median walk-completion tiiree, motivation for sampling is to gather reasonably accurate data at
when 50% of the walks have completed. relatively low cost. As a rough rule of thumb, a valuelof>
0.1 is quite bad, corresponding to at least a 10 percentage point
i i i difference on a CDF. A value oD < 0.01 is excellent for
Because the potential number 01_‘ simulation parametersyig, ¢ purposes when studying a peer property, corresponding
unbounded, we need a systematic method to intelligently ,o more than a 1 percentage point difference on a CDF.

4The value of 10 seconds was selected based on our experiments in
developing a crawler for the Gnutella network in [12]. D. Exploring different dynamics
5Each walk ends after the same numbehops but not every hop takes the . . . .
same amount aime due to differences in latencies and due to the occasional In this section, we examine how the amount of bias changes
timeout. as we vary the type and rate of dynamics in the system.

C. Evaluation of a base case
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Fig. 4: Sampling error of the three fundamental properties as a function of session-length distribution. Exceptionally heavy churrc(median
1min) introduces error into the sampling process.

We examine different settings of the simulation parametedsstribution varies the threshold slightly, but overall does not
that affect dynamics, while continuing to use the topologicappear to have a significant impact. To investigate whether
characteristics from our base case (Table Il). We would expéiae critical threshold is a function of the length of the walk,
that as the rate of peer dynamics increases, the sampling ewerran some simulations using walks of 10,000 hops (which
also increases. The key question lifow fast can the churn take around one simulated hour to complete). Despite the
rate be before it causes significant error, and is that likely ttong duration of these walks, they remained unbiased with
occur in practice? D < 0.003 for each of the three fundamental properti€skis
In this subsection, we present the results of simulations wishiggests that the accuracy of MRWB is not adversely affected
a wide variety of rates using three different models for sessiby a long walk
length, as follows: While the median session length reported by measurement
o Exponential: The exponential distribution is a one-studies varies considerably (see [42] for a summary), none
parameter distribution (rate\) that features sessionsreport a median below 1 minute and two studies report a
relatively close together in length. It has been used iedian session length of one hour [3], [4]. In summary, these
many prior simulation and analysis studies of peer-teesults demonstrate that MRWB can gracefully tolerate peer

peer systems [41]-[43]. dynamics. In particular, it performs well over the rate of churn
o Pareto: The Pareto (or power-law) distribution is areported in real systems.

two-parameter distribution (shape location z,,) that
features many short sessions coupled with a few very lo
sessions. Some prior measurement studies of peer
peer systems have suggested that session lengths follown this section, we examine different settings of the sim-
a Pareto distribution [44]-[46]. One difficulty with thisulation parameters that directly affect topological structure,
model is thatz,, is a lower-bound on the session lengthwhile using the dynamic characteristics from our base case
and fits of z,,, to empirical data are often unreasonabl{Table Il). The Metropolis—Hastings method makes use of
high (.e., placing a lower bound significantly higher tharthe ratio between the degrees of neighboring peers. If this
the median session length reported by other measuremé@iio fluctuates dramatically while the walk is conducted, it
studies). In their insightful analytical study of churn inmay introduce significant bias. If peers often have only a few
peer-to-peer systems, Leonard, Rai, and Loguinov [4gpnnections, any change in their degree will result in a large
instead suggest using a shifted Pareto distribution (shap@rcentage-wise change. One key question is thereflmes
«, scalef) with a ~ 2. We use this shifted Pareto distri-a low target degree lead to sampling bias, and, if so, when is
bution, holdinge fixed and varying the scale parametegignificant bias introduced?
(. We examine two differenty values:a = 1.9 (infinite The degree of peers is controlled by three factors. First,
variance) andv = 2.1 (finite variance). each peer has peer discovery mechanisthat enables it to
« Weibull: Our own empirical observations [5] suggest théearn the addresses of potential neighbors. The peer discovery
Weibull distribution (shapé:, scale)) provides a good mechanism will influence the structure of the topology and, if
model of peer session lengths, representing a compromggforming poorly, will limit the ability of peers to establish
between the exponential and Pareto distributions. We fiennections. Second, peers havéamet degreewhich they
k = 0.59 (based on our empirical data) and vary the scafetively try to maintain. If they have fewer neighbors than
parameter\. the target, they open additional connections until they have
Figure 4 presents the amount of sampling errb) @s a reached the target. If necessary, they make use of the peer
function of median session length, for the three fundamentiiscovery mechanism to locate additional potential neighbors.
properties, with a logarithmig-axis scale. The figure showsFinally, peers have amaximum degreewhich limits the
that error is low O < 0.01) over a wide range of sessionnumber of neighbors they are willing to accept. If they are
lengths but begins to become significant when the mediabhthe maximum and another peer contacts them, they refuse
session length drops below 2 minutes, and exceBds= the connection. Each of these three factors influences the graph
0.1 when the median drops below 30 seconds. The type sifucture, and therefore may affect the walk.

_%g_ Exploring different topologies
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Fig. 5: Sampling error of the three fundamental properties as a function of the number of connections each peer actively attempts to maintain.
Low target degree< 2) introduces significant sampling error.

We model four different types of peer discovery mecha- 100
nisms, based on those found in real systems: __ 80
S
« Random Oracle: This is the simplest and most idealistic o 60—
approach. Peers learn about one another by contacting a 8 49|
rendezvous point that has perfect global knowledge of © 90— Snapshot—
the system and returns a random set of peers for them to Sample -~
connect to. 0 L Y B O B
« FIFO: In this scheme, inspired by the GWebCaches of 0 5 10 15 20 25 30

) . Degree
Gnutella [48], peers contact a rendezvous point which

returns a list of the last: peers that contacted thefig. 6: Comparison of degree distributions using the History mech-

rendezvous. whers is the maximum peer dearee anism with a target degree of 30. Sampling cannot capture the
! . P g ) unconnected peers (degree€0), causing the sampling error observed
« Soft State: Inspired by the approach of BitTorrent'sjy Figure 5.

“trackers”, peers contact a rendezvous point that has
imperfectglobal knowledge of the system. In additiony agmentation, and is therefore not a reasonable operating
to contacting the rendezvous point to learn about MOfR)int for peer-to-peer systems.
peers, every peer periodically (every half hour) contacts the regulits for the different peer-discovery mechanisms
the rendezvous point to refresh its state. If a peer faifere similar to one another, except for a small amount of
to make contact for 45 minutes, the rendezvous poiff,s ohserved when using the History mechanism as the target
removes it from the list of known peers. degree approaches the maximum degree (30). To investigate
« History: Many P2P applications connect to the nefy,q jssue, Figure 6 presents the sampled and expected degree
work using addresses they learned during a previoygibytion when using the History mechanism with a target
session [49]. A large fraction of these addresses Wilagree of 30. The difference between the sampled and ex-
timeout, but typically enough of the peers will stilljocteq distributions is due to the 2.4% of peers with a degree
be active to avoid the need to contact a centralizef ;o1 These isolated peers arise in this scenario because the
rendezvous point. As tracking the re-appearance of pPeg[gory mechanism has a high failure rate (returning addresses
greatly complicates our simulator (as well as greatlyimarily of departed peers), and when a valid address is
increasing the memory requirements), we use a Coai8@nq it frequently points to a peer that is already at its
model of the History mechanism. We assume that 90¢nnection limit. The zero-degree peers are visible in the
of connections automatically timeout. The 10% that aig,5nshot (which uses an oracle to obtain global information),
given valid addresses are skewed towards peers that hg\ ot o the sampler (since peers with a degree of zero have
been present for a long time (more than one hour) ap@, heighbors and can never be reached). We do not regard
represent regular users who might have been presgiiiiing disconnected peers as a serious limitation.
during the peer’s last session. While this might be overly ,,ing explored the effects of lowering the degree, we now
peSS|_m|st|c, it reveals the behavior of MRWB under hars&(plore the effects of increasing it. In Figure 7, we examine
conditions. sampling error as a function of the maximum degree, with the
Figure 5 presents the amount of sampling erij for the target degree always set to 15 less than the maximum. There
three fundamental properties as a function of the target degrisdijttle error for any setting of the maximum degree.
for each of the peer discovery methods, holding the maximumin summary, the proposed MRWB technique for sampling
peer degree fixed at 30 neighbors. It shows that samplitgm dynamic graphs appears unbiased for a range of dif-
is not significantly biased in any of the three fundamentédrent topologies (with reasonable degree distributiang;
properties as long as peers attempt to maintain at least thdegree > 3), operates correctly for a number of different
connections. Widely deployed peer-to-peer systems typicaftyechanisms for peer discovery, and is largely insensitive to
maintain dozens of neighbors. Moreover, maintaining fewarwide range of peer dynamics, with the churn rates reported
than three neighbors per peer almost certainly leads to netwfwk real systems safely within this range.
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Fig. 7: Sampling error of the three fundamental properties as a function of the maximum number of connections each peer will accept. Each

peer actively attempts to maintain— 15 connections.

V1. EMPIRICAL RESULTS we would not expect a perfect match between Cruiser and

In addition to the simulator version, we have implementetfMPling, but if the sampling is unbiased we still expect them
the MRWB algorithm for sampling from real peer-to-pee?o be very close. We can view the CCDF version of the degree

networks into a tool called on- sanpl er. The following distribution captured by Cruiser as a close upper-bound on the
subsections briefly describe the implementation and usagel™&€ degree distribution.

i on- sanpl er and present empirical experiments to validate Figure 8 presents a comparison of the degree distribution
its accuracy. of reachable ultrapeers in Gnutella, as seen by Cruiser and

by the sampling tool (capturing approximately 1,000 samples
with » = 25 hops). It also includes the results of a short
crawl,” a sampling technique commonly used in earlier studies
Thei on- sanpl er tool uses a modular design that acceptg.g, [3]). We interleaved running these measurement tools to
plug-ins for new peer-to-peer systefisA plug-in can be minimize the change in the system between measurements of
written for any peer-to-peer system that allows querying different tools, in order to make their results comparable.
peer for a list of its neighbors. Theon-sanpl er tool Examining Figure 8, we see that the full crawl and sampling
hands IP-address:port pairs to the plug-in, which later returgigtributions are quite similar. The sampling tool finds slightly
a list of neighbors or signals that a timeout occurred. Thfiore peers with lower degree, compared to the full crawl,
i on- sanpl er tool is responsible for managing the walks. lin accordance with our expectations described above. We
outputs the samples to standard output, where they may be gg&mined several such pairs of crawling and sampling data and
ily read by another tool that collects the actual measuremerftsiind the same pattern in each pair. By comparison, the short
For example,i on- sanpl er could be used with existing crawl exhibits a substantial bias towards high degree peers
measurement tools for measuring bandwidth to estimate tffative to both the full crawl and sampling. We computed
distribution of access link bandwidth in a peer-to-peer systefe KS statistic ) between each pair of datasets, presented
Listing 1 shows an example of usingon- sanpl er to in Table Ill. Since the full crawl is a closapper-boundof
sample peers from Gnutella. the true degree distribution, and since sampling’s distribution
is lower, the error in the sampling distribution relative to the

A. lon-Sampler

B. Empirical Validation
. . . . . A “short crawl” is a general term for a progressive exploration of a portion
Emplrlcal validation is Cha”eng'ng due to the absence gfthe graph, such as by using a breadth-first or depth-first search. In this case,

high-quality reference data to compare against. In our earligs randomly select the next peer to explore.
work [12], [39], we developed a peer-to-peer crawler called
Cruiser that captures the complete overlay topology throm:?ﬁsm ./ion-sanmpler gnutella --hops 25 -n 10
exhaustive exploration. We can use these topology shaps 8. 65. 171: 6348
. o 10.7199. 20. 183: 5260
as a point of reference for. the degree dlstrlby§|on. Unforldy s a5 103: 34717
nately, we do not have reliably accurate empirical referengg 21. 0. 29: 6346
data for session lengths or query latency. 10. 32. 170. 200: 6346
By capturing every peer, Cruiser is immune to samplintQ. 201. 162. 49: 30274
difficulties. However, because the network changes as Cruli gr gié 6132352_2252;272
operates, its s_ngpshots are slightly distorted [12]. Ir_1 parfity’ 79 198 44- 36520
ular, peers arriving near the start of the crawl are likely |tpg. 216. 54. 169: 44380
have found additional neighbors by the time Cruiser contgdtash$
them. Therefore, we intuitively expect a slight upward bi

S
in Cruiser’'s observed degree distribution. For this reasotﬂ

sting 1: Example usage of theon- sanpl er tool. We specify
at we want to use the Gnutella plug-in, each walk should take 25
6In fact, it uses the same plug-in architecture as our earlier, heavy-wei ps, and we quld like 10 samples. The tQOl then prints out 10

y ' -address:port pairs. We have changed the first octet of each result

tool, Cruiser, which exhaustively crawls peer-to-peer systems to capture, "t .
topology snapshots. to “10” for privacy reasons.
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versus exhaustively crawling all peers of walk length. Each experiment was repeated several times. Error
bars show the sample standard deviation.

Short Crawl  Full Crawl  Sampling
Short Crawl — 0.120 0.161 07 -
Full Crawl 0.120 — 0.043 ’
Sampling 0.161 0.043 — s 0.6 4
TABLE Ill: KS statistic D) between pairs of empirical datasets L%@ 8'2 ]
5 0.4 -
290 i
true distribution isD < 0.043. On the other hand, because the ig’ 0-3
short crawl dateexceedghe full crawl distribution, its error § 0.2 1 “HHHHHHH . | | { |
relative to the true distribution i® > 0.120. In other words, 0.1 7
0

the trueD for the sampling data iat most0.043, while the true ‘ ‘ ‘ ‘ ‘ ! ‘ ‘

D for the short crawl data iat least0.120. It is possible that 0 10200 30 40500 6070 80
sampling with MRWB produces more accurate results than a Walk Length (r hops)

full crawl (which suffers from distortion), but this is difficult Fig. 10: Difference between sampled results and a crawl as a function
to prove conclusively. of walk length, after the change suggested in Section VI-C. Each

experiment was repeated several times. Error bars show the sample
standard deviation.

C. Efficiency

Having demonstrated the validity of the MRWB techniqugor a regular random walk’s bias towards high degree peers.
we now turn our attention to its efficiency. Performing thejowever, when it occurs during the first step of the walk, a
walk requiresn - r queries, wheren is the desired number |arge fraction of the walks will end at the unusual low-degree

of samples and- is the length of the walk in hops. If is peer, resulting in an anomalous set of selections where the
too low, significant bias may be introduced.rifis too high, same peer is chosen many times.

it should not introduce bias, but is less efficient. From graph
theory, we expect to require > O(log |V]) for an ordinary
random walk.

One way to address this problem is to increase the walk
length by requiring

To empirically explore the selection of for Gnutella, we > We og |V].
conducted many sets of sampling experiments using different _ minimum degree ,
values ofr, with full crawls interspersed between the samplinfjfoWever, this reduces the efficiency of the walk. More im-
experiments. For each sampling experiment, we compute ff¥tantly, we typically do not accurately know the maximum
KS statistic, D, between the sampled degree distribution arfff9ree.i-e. while increasingr decreases the probability of
that captured by the most recent crawl. Figure 9 presents fife @nomalous event, it does not preclude it. Therefore, we
mean and standard deviation bf as a function ofr across SU9gest the fol!owmg he_urlst|c to prevent such problems from
different experiments. The figure shows that low values of °CCUTINg. During the first few steps of the walk, always
(< 10) can lead to enormous bia® (> 0.4). The amount of trans_ltlon to the next peer as in a reg_ular random walk; after
bias decreases rapidly with and low bias is observed for € first few steps, use the Metropolis-Hastings method for
> 25 hops. However, in a single experiment with= 30 deciding whether to transition to thg next peer or remain at
hops, we observed > 0.3, while all other experiments at Fhe current one._Th|s m.odmcat|on. ehmmatgs the c;orrelatpns
that length showed) < 0.09. Investigating the anomalousinNduced by sharing a single starting location, while keeping

dataset, we found that a single peer had been selected 309BgtWalk length relatively short. We repeated the experiment
of 999 times. after making this change; the results are shown in Figure 10.

Further examining the trace of this walk, we found that ththe observed error in the revised implementation is low for
> 15, with low variance. In other words, the samples are

walk happened to start at a peer with only a single neighbbr=
In such a case, the walk gets stuck at that peer due to figfsistently accurate for> 15.

way Metropolis—Hastings transitions to a new pegewith In light of these considerations, we conservatively regard a
probability only 329€¢2) \when this “stuck” event occurs latechoice ofr = 25 as a safe walk length for Gnutella. Choosing

degre!
in the walk, it is just part of the normal re-weighting to correct = 25, we can collect 1,000 samples by querying 25,000
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18 network size increases, the cost of a full crawl grows linearly
E 16 and takes longer to complete, introducing greater distortion
';’u? 14 A into the captured snapshots. For MRWB, the cost increases
S8 12 4 logarithmically, and no additional bias is introduced.
%g 10 4
L= 84
I VII. DISCUSSION
= . i A. How many samples are required?

T T T T T T T 1

An important consideration when collecting samples is to
know how many samples are needed for statistically significant
results. This is principally a property of the distribution being
sampled. Consider the problem of estimating the underlying
frequency f of an event,e.g, that the peer degree takes

] ) ] a particular value. GiverN unbiased samples, an unbiased
peers, over an order of magnitude in savings compared Witkiimate off is f = M/N whereM is the number of samples

performing a full crawl which must contact more than 400,00Q, . \\hich the event occursf has root mean square (RMS)
relative error

. o . o=\/Var(f)/f=+(1-[f)/fN.

We examined execution time as a function of the number g, this expression, we derive the following observations:
of hops,, and present the results in Figure 11. With= , Estimation error does not depend on the population
25 hops, the execution time is around 10 minutes. In our sjze; in particular the estimation properties of unbiased

0 10 20 30 40 50

Walk Length (r hops)

60 70 80

Fig. 11: Runtime ofi on- sanpl er as a function of walk length
when collecting 1,000 samples.

D. Execution Time

initial implementation ofi on- sanpl er, a small fraction

of walks would get “stuck” in a corner of the network,
repeatedly trying to contact a set of departed peers. While,
the walks eventually recover, this corner-case significantly and
needlessly delayed the overall execution time. We added a

sampling scale independently of the size of the system
under study.

The above expression can be inverted to derive the
number of sampled/; , required to estimate an outcome
of frequency f up to an erroro. A simple bound is

small cache to remember the addresses of unresponsive peersN; , < 1/(fo?).

to address this issue. o
For comparison, Cruiser takes around 13 minutes to capture
the entire topology. This begs the question:dn- sanpl er
does an order of magnitude less work, why is the running
time only slightly better? Whilei on- sanpl er contacts
significantly fewer peers, walks are sequential in nature which
limits the amount of parallelism thaton- sanpl er can
exploit. Cruiser, on the other hand, can query peers almost
entirely in parallel, but it must still daD(n) work, where

Unsurprisingly, smaller frequency outcomes have a larger
relative error. For example, gathering 1,000 unbiased
samples gives us very little useful information about
events which only occur one time in 10,000; the as-
sociatedo value is approximately 3: the likely error
dominates the value to be estimated. This motivates using
biased samplingn circumstances that we discuss in the
next subsection.

The presence of sampling bias complicates the picture. If

n is the population size. In other words, if a peer-to-pean event with underlying frequency is actually sampled
network doubles in size, Cruiser will take twice as longith frequencyf,, then the RMS relative error acquires an
to capture it. Alternately, we can keep Cruiser’s executicadditional term(1 — fo/f)? which does not reduceas the
time approximately constant by double the amount of hardumber of sample®V grows. In other words, when sampling
ware and bandwidth we provision for Cruiser's use. Thigom a biased distribution, increasing the number of samples
i on- sanpl er tool requires onlyO(logn) work, meaning only increases the accuracy with which we estimatebibsed
there is little change in its behavior as the network grows. distribution.

While longer execution time has a negative impact on the
accuracy of Cruiser’s resultspn- sanpl er ’s results are not
significantly impacted by the time required to perform the wal

IE. Unbiased versus hiased sampling

(as demonstrated in Section V-D where we simulate walks ofAt the beginning of this paper, we set the goal of collecting
10,000 hops). unbiased samples. However, there are circumstances where

unbiased samples are inefficient. For example, while unbiased
samples provide accurate information about the body of a
E. Summary distribution, they provide very little information about the
In summary, these empirical results support the conclusitails: the pitfall of estimating rare events we discussed in the
that a Metropolized Random Walk with Backtracking is aprevious subsection.
appropriate method of collecting measurements from peer-todn circumstances such as studying infrequent events, it may
peer systems, and demonstrate that it is significantly mdse desirable to gather samples wittkimown sampling bigs
accurate than other common sampling techniques. They ailsn, with non-uniform sampling probabilities. By deliberately
illustrate the dramatic improvement in efficiency and scal@troducing a sampling bias towards the area of interest, more
bility of MRWB compared to performing a full crawl. As relevant samples can be gathered. During analysis of the data,
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each sample is weighted inversely to the probability that it imeasurement tools to accurately characterize several properties
sampled. This yields unbiased estimates of the quantitiesadfwidely-deployed P2P systems.

interest, even though the selection of the samples is biased.

This approach is known amportance samplings0]. ACKNOWLEDGMENTS
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C. Sampling from structured systems

Throughout this paper, we have assumed an unstructured
peer-to-peer network. Structured systems (also known as Difg] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,

; ; ; F. Dabek, and H. Balakrishnan, “Chord: A Scalable Peer-to-peer
tributed Hash Tables or DHTS) should work Just as well with Lookup Protocol for Internet Applications/EEE/ACM Transactions

random walks, provided links are still bidirectional. However,  on Networking 2002.
the structure of these systems often allows a more efficieif@] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
technique Scalable Content-Addressable Network,”StGCOMM 2001.
: [3] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “Measuring and Analyzing
In a typical DHT scheme, each peer has a randomly gener- he Characteristics of Napster and Gnutella Hoséjttimedia Systems
ated identifier. Peers form an overlay that actively maintains Journal vol. 9, no. 2, pp. 170-184, Aug. 2003.

; ; s [#1 R. Bhagwan, S. Savage, and G. Voelker, “Understanding Availability,”
certain properties such that messages are efficiently routed ) in International Workshop on Peer-to-Peer Syste@803.

the peer “closest” to a target identifier. The exact propertieg] p. stutzbach and R. Rejaie, “Understanding Churn in Peer-to-Peer
and the definition of “closest” vary, but the theme remains the Networks,” ininternet Measurement Conferendgio de Janeiro, Brazil,

same. In these systems, to select a peer at random, we rg Oct. 2006.
n

. . e . . S. Chib and E. Greenberg, “Understanding the Metropolis—Hastings
simply generate an identifier uniformly at random and fi Algorithm,” The Americian Statisticignvol. 49, no. 4, pp. 327-335,

the peer closest to the identifier. Because peer identifiers are Nov. 1995.

; W. Hastings, “Monte Carlo Sampling Methods Using Markov Chains
g(_enerated umformly at ran<_jom, We knO\.N they are uncorrel_atéa] and TheirgAppIications ’Biometrikg vgl. 57, pp. 97—1099 1970.
with any other property. This technique is simple and effectivgg) N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller,

as long as there is little variation in the amount of identifier ~ “Equations of State Calculations by Fast Computing Machinisjfnal

; ; :« of Chemical Physigsvol. 21, pp. 1087-1092, 1953.
space that each peer is responsible for. We made use of tl"g? A. Awan, R. A. Ferreira, S. Jagannathan, and A. Grama, “Distributed

sampling technique in our study of the widely-deployed Ka(i Uniform Sampling in Unstructured Peer-to-Peer Networks, Hewaii
DHT [51], International Conference on System Sciend&suai, HI, Jan. 2006.
[10] Z. Bar-Yossef and M. Gurevich, “Random Sampling from a Search
Engine’s Index,” inWWW 2006.
VIII. CONCLUSIONS ANDFUTURE WORK [11] D. Stutzbach, R. Rejaie, N. Duffield, S. Sen, and W. Willinger,
. . . “Sampling Techniques for Large, Dynamic Graphs,"Giobal Internet
This paper explores the problem of sampling representative SymposiumBarcelona, Spain, Apr. 2006.
peer properties in large and dynamic unstructured P2P sp®j D. Stutzbach and R. Rejaie, “Capturing Accurate Snapshots of the

tems. We show that the topological and temporal properties of SSC;JSte”[?p Nlezt;mlrgz in Global Internet SymposiumMiami, FL, Mar.

P2P systems can lead to S|gn|f|cant bias in collected samplﬁ§} B. Bollobas, “A probabilistic proof of an asymptotic formula for the
To collect unbiased samples, we present the Metropolized number of labelled regular graph&tropean Journal of Combinatorics
Random Walk with Backtracking (MRWB), a modification of Vol 1 pp. 311-316, 1980. _ _ ,
he Met lis—Hastinas technigue. which we developed in%ﬂ M. Jerrgm and A. Slnclalr_, Fast uniform generation of regular graphs,
the Metropo g que, p Theoretical Computer Scienceol. 73, pp. 91-100, 1990.

thei on- sanpl er tool. Using both simulation and empirical[15] C. Cooper, M. Dyer, and C. Greenhill, “Sampling regular graphs and
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REFERENCES

nbiased samples of peer properties over a wide range pp. 980-988.

u ' > p g p prop '_ Vi wi g [ﬁﬁ V. Krishnamurthy, J. Sun, M. Faloutsos, and S. Tauro, “Sampling

realistic peer dynamics and topological structures. Internet Topologies: How Small Can We Go?" imternational
We are pursuing this work in the following directions. C?;‘f%fgce on Internet Computing.as Vega, NV, June 2003, pp.

First, we are exploring imp-roving ;ampling .Efﬁ_CienCy f9f17] V. Krishnamurthy, M. Faloutsos, M. Chrobak, L. Lao, J.-H. Cui,
uncommon events (such as in the tail of distributions) by in- and A. G. Percus, “Reducing Large Internet Topologies for Faster

troducing known bias, as discussed in Section VII-B. Second Simulations,” inIFIP Networking Waterloo, Ontario, CA, May 2005.
dvi he behavi f MRWB der flash 8] M. P. H. Stumpf, C. Wiuf, and R. M. May, “Subnets of scale-
we are studying the behavior o under tash-cro free networks are not scale-free: Sampling properties of networks,”

scenarios, where not only the properties of individual peers Proceedings of the National Academy of Scienget 102, no. 12, pp.

are changing, but thdistribution of those properties is also __ 4221-4224, Mar. 2005. -
[19] A. A. Tsay, W. S. Lovejoy, and D. R. Karger, “Random Sampling in

.rapidly. eVOIVing' Fina”y' we ‘?‘re -de.zvelop_ing Qdditiqnal plug- Cut, Flow, and Network Design Problemsfathematics of Operations
ins fori on- sanpl er and using it in conjunction with other Researchvol. 24, no. 2, pp. 383-413, Feb. 1999.



14

[20] A. Lakhina, J. W. Byers, M. Crovella, and P. Xie, “Sampling Biases in SIGMETRICS2005.

[21]

[22]

(23]

[24]

[25]

[26]
[27]

(28]

[29]

[30]

[31]
[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

IP Topology Measurements,” iNFOCOM, 2003. [48] H. Dampfling, “Gnutella Web Caching System: Ver-
D. Achlioptas, A. Clauset, D. Kempe, and C. Moore, “On the Bias of sion 2 Specifications Client Developers’ Guide,”
Traceroute Sampling; or, Power-law Degree Distributions in Regular  http://www.gnucleus.com/gwebcache/newgwc.html, June 2003.
Graphs,” inSymposium on Theory of Computirigaltimore, MD, May [49] P. Karbhari, M. Ammar, A. Dhamdhere, H. Raj, G. Riley, and
2005. E. Zegura, “Bootstrapping in Gnutella: A Measurement Study,” in
P. Rusmevichientong, D. M. Pennock, S. Lawrence, and C. L. Giles, PAM, Apr. 2004.

“Methods for Sampling Pages Uniformly from the World Wide Web,’[50] R. Srinivasan. Berlin, Germany: Springer-Verlag, 2002.

in  AAAI Fall Symposium on Using Uncertainty Within Computation[51] D. Stutzbach and R. Rejaie, “Improving Lookup Performance over a

2001, pp. 121-128. Widely-Deployed DHT,” inINFOCOM, Barcelona, Spain, Apr. 2006.

M. Henzinger, A. Heydon, M. Mitzenmacher, and M. Najork,

“On Near-Uniform URL Sampling,” ininternational World Wide Web Daniel Stutzbach (M'06) is the president of
Conference May 2001, pp. 295-308. Stutzbach Enterprises, LLC. He completed his Ph.D.
L. Lovasz, “Random walks on graphs: A survegdmbinatorics: Paul at the University of Oregon in 2006, where he
Erdds is Eighty vol. 2, pp. 1-46, 1993. focused on measurement and modeling of peer-to-
Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and PLACE peer systems. Prior to joining the UO, Daniel worked
Replication in Unstructured Peer-to-Peer Networks,”Imternational PHOTO as an embedded systems programmer, developing
Conference on Supercomputjriz002. HERE firmware for routers. Daniel earned his B.S. degree
Y. Chawathe, S. Ratnasamy, and L. Breslau, “Making Gnutella-like from Worcester Polytechnic Institute in 1998. Daniel
P2P Systems Scalable,” BIGCOMM 2003. has been a member of the ACM since 2003 and the
C. Gkantsidis, M. Mihail, and A. Saberi, “Random Walks in IEEE since 2005.

Peer-to-Peer Networks,” iNFOCOM, 2004.
V. Vishnumurthy and P. Francis, “On Heterogeneous Overl
Construction and Random Node Selection in Unstructured P2

Reza Rejaie (SM'06) is currently an Assistant

oK<

Networks,” in INFOCOM, Barcelona, Spain, Apr. 2006. Professor at the Unlve_rsny of Qregon. From 1999
M. Salganik and D. Heckathorn, “Sampling and estimation in hidden to 2002, he was a Senior Technical Staff member at
populations using respondent-driven samplirfggciological Methodol- PLACE ﬁz&;—eclé?\?:d_ﬁ?\Isselgr‘é:hAgE'\égnlAOWZ?drkf’o::ﬁligo\;\?(;?k
ogy, vol. 34, pp. 193-239, 2004. S . .

D. Heckathorn, “Respondent-driven sampling: a new approach to the Pﬁé)F;I'EO on P2P streaming in 2005. Reza received his M.S.
study of hidden populations3ocial Problemsvol. 44, no. 2, pp. 174— and Ph.D. degrees from the University of Southern
199, 1997. California in 1996 _and _1999, and his BS degree
L. Goodman, “Snowball SamplingAnnals of Math. Statisticsvol. 32, from t_he Sha.”f University of Technology in 1991.
pp. 148-170, 1961. Reza is a senior member of both the ACM and IEEE.
E. Deaux and J. Callaghan, “Key informant versus self-report estimates

of health behavior,’Evaluation Reviewsvol. 9, pp. 365-368, 1985. Nick Duffield (F'05) is a Distinguished Member of
J. Watters and P. Biernack, “Targeted sampling: Options for the study|of Technical Staff and an AT&T Fellow in the Internet
hidden populations,Annual Review of Sociolpgol. 12, pp. 401-429, & Network Systems Research Laboratory at AT&T
1989. . . . . . . Labs—Research, where he has been since 1995. He
M. Salganik, “Variance estimation, design effects, and sample size PLACE previously held postdoctoral and faculty positions
calculation for respondent-driven samplinggurnal of Urban Health PHOTO in Dublin, Ireland and Heidelberg, Germany. He
(to appear) 2006. ) HERE received a Ph.D. from the University of London,
J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over Time: UK, in 1987. His current research focuses on mea-

Densification Laws, Shrinking Diameters and Possible Explanations,

h . surement and inference of network traffic. He was
in KDD, Chicago, IL, Aug. 2005.

harter Chair of the IETF ki Packet
A. Bonato, “A survey of models of the web graph,” @ombinatorial ga?nr?lzng 6;;3 co-einvento\rNcc))l; It?\% %%uaﬁ),togan?g"r?g
and Algorithmic Aspects of Networking004, pp. 159-172. fechnologies that lie at the heart of AT&T’s scalable Traffic Analysis Service.

J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “:!'h_e Bittorrent P¢le s a Fellow of the IEEE. He is an Associate Editor of the IEEE/ACM
File-sharing System: Measurements and Analysis,”liiternational  4nsactions on Networking.

Workshop on Peer-to-Peer Systems (IPTRBaca, NY, Feb. 2005.

M. Izal, G. Urvoy-Keller, E. W. Biersack, P. A. Felber, A. A. Hamra, Subhabrata Sen (M'01) received a Bachelor of
and L. Garces-Erice, “Dissecting BitTorrent: Five Months in a Torrent’s Engineering (First Class with Honors) degree in
Lifetime,” in PAM, Apr. 2004. Computer Science (1992) from Jadavpur University,
D. Stutzbach, R. Rejaie, and S. Sen, “Characterizing Unstructurgd India, and M.S. and Ph.D. degrees in Computer Sci-
Overlay Topologies in Modern P2P File-Sharing Systems Internet PLACE ence from the University of Massachusetts, Amherst,
Measurement ConferencBerkeley, CA, Oct. 2005, pp. 49-62. PHOTO USA, in 1997 and 2001, respectively. Dr. Sen is
K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: Estimating HERE currently a Principal Member of Technical Staff in
Latency between Arbitrary Internet End Hosts,litternet Measurement the Internet & Network Systems Research Labora-
Workshop Marseille, France, Nov. 2002. tory at AT&T Labs—Research, where he has been
D. Liben-Nowell, H. Balakrishnan, and D. Karger, “Analysis of since 2001. His research interests include IP network
the Evolution of Peer-to-Peer Systems,” Rrinciples of Distributed management, traffic analysis, network data mining,
Computing Monterey, CA, July 2002. security and anomaly detection, peer-peer systems, and end-to-end support
S. Rhea, D. Geels, and J. Kubiatowicz, “Handling Churn in a DHT for streaming multimedia. He is a member of the ACM.

in USENIX 2004, pp. 127-140.

J. Li, J. Stribling, F. Kaashoek, R. Morris, and T. Gil, “A Performancd Walter Willinger (F'95) received the Diplom (Dipl.

vs. Cost Framework for Evaluating DHT Design Tradeoffs under Math.) from the ETH Zurich, Switzerland, and the
Churn,” in INFOCOM, Miami, FL, Mar. 2005. M.S. and Ph.D. degrees from the School of ORIE,
F. E. Bustamante and Y. Qiao, “Friendships that last: Peer lifespan and |, Cornell University. He is a member of the Infor-
its role in P2P protocols,” irinternational Workshop on Web Content mation and Software Systems Research Center at
Caching and Distribution 2003. PHOTO AT&T Labs—Research. Previously, he was a Member
S. Sen and J. Wang, “Analyzing Peer-To-Peer Traffic Across Large HERE of Technical Staff at Bellcore Applied Research
Networks,” IEEE/ACM Transactions on Networkingol. 12, no. 2, pp. (1986-1996). He is a Fellow of ACM (2005) and
219-232, Apr. 2004. a Fellow of IEEE (2005). For his work on the
K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, anf self-similar (“fractal”) nature of Internet traffic, he
J. Zahorjan, “Measurement, Modeling, and Analysis of a Peer-to-Peer received the 1996 IEEE W.R.G. Baker Prize Award,
File-Sharing Workload,” inrSOSP 2003. the 1994 W.R. Bennett Prize Paper Award, and the 2005 ACM/SIGCOMM
D. Leonard, V. Rai, and D. Loguinov, “On Lifetime-Based Node Failuré Test of Time” Paper Award. He is an AT&T Fellow (2007) and a Fellow of

and Stochastic Resilience of Decentralized Peer-to-Peer Networks,”AkM (1995).



	Introduction
	Related Work
	Graph sampling
	Random walk-based sampling of graphs
	Sampling in hidden populations
	Dynamic graphs

	Sampling with Dynamics
	Sampling from Static Graphs
	Sampling from Dynamic Graphs
	Coping with Departing Peers
	Evaluation methodology
	Evaluation of a base case
	Exploring different dynamics
	Exploring different topologies

	Empirical Results
	Ion-Sampler
	Empirical Validation
	Efficiency
	Execution Time
	Summary

	Discussion
	How many samples are required?
	Unbiased versus biased sampling
	Sampling from structured systems

	Conclusions and Future Work
	References
	Biographies
	Daniel Stutzbach (M'06)
	Reza Rejaie (SM'06)
	Nick Duffield (F'05)
	Subhabrata Sen (M'01)
	Walter Willinger (F'95)


