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Abstract— In recent years, peer-to-peer (P2P) file-sharing sys-
tems have evolved to accommodate growing numbers of par-
ticipating peers. In particular, new features have changed the
properties of the unstructured overlay topologies formed by these
peers. Little is known about the characteristics of these topologies
and their dynamics in modern file-sharing applications, despite
their importance.

This paper presents a detailed characterization of P2P overlay
topologies and their dynamics, focusing on the modern Gnutella
network. We present Cruiser, a fast and accurate P2P crawler,
which can capture a complete snapshot of the Gnutella network of
more than one million peers in just a few minutes, and show how
inaccuracy in snapshots can lead to erroneous conclusions—such
as a power-law degree distribution. Leveraging recent overlay
snapshots captured with Cruiser, we characterize the graph-
related properties of individual overlay snapshots and overlay
dynamics across slices of back-to-back snapshots. Our results
reveal that while the Gnutella network has dramatically grown
and changed in many ways, it still exhibits the clustering and
short path lengths of a small world network. Furthermore, its
overlay topology is highly resilient to random peer departure
and even systematic attacks. More interestingly, overlay dynamics
lead to an “onion-like” biased connectivity among peers where
each peer is more likely connected to peers with higher uptime.
Therefore, long-lived peers form a stable core that ensures
reachability among peers despite overlay dynamics.

Index Terms— Peer-to-peer, File sharing, Measurement, Over-
lay topology, Gnutella

I. I NTRODUCTION

T HE Internet has witnessed a rapid growth in the popu-
larity of various Peer-to-Peer (P2P) applications during

recent years. In particular, today’s P2P file-sharing applications
(e.g., FastTrack, eDonkey, Gnutella) are extremely popular
with millions of simultaneous clients and contribute a signifi-
cant portion of the total Internet traffic [1]–[3]. These applica-
tions have evolved over the past several years to accommodate
growing numbers of participating peers. In these applications,
participating peers form an overlay which provides connectiv-
ity among the peers, allowing users to search for desired files.
Typically, these overlays areunstructuredwhere peers select
neighbors through a predominantly ad hoc process—this is
different fromstructuredoverlays,i.e., distributed hash tables
such as Chord [4] and CAN [5]. Most modern file-sharing
networks use atwo-tier topology where a subset of peers,
called ultrapeers, form an unstructured sparse graph while
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other participating peers, calledleaf peers, are connected to
the top-level overlay through one or multiple ultrapeers. More
importantly, the overlay topology is continuously reshaped by
both user-driven dynamics of peer participation as well as
protocol-driven dynamics of neighbor selection. In a nutshell,
as participating peers join and leave, they collectively, in a
decentralized fashion, form an unstructured and dynamically
changing overlay topology.

This work focuses on developing an accurate understanding
of the topological properties and dynamics of large-scale
unstructured P2P networks, via a case study. Such an un-
derstanding is crucial for the development of P2P networks
with superior features including better search, availability,
reliability and robustness capabilities. For instance, the design
and simulation-based evaluation of new search and replication
techniques has received much attention in recent years [6]–
[9]. These studies often make certain assumptions about
topological characteristics of P2P networks (e.g., a power-law
degree distribution) and usually ignore the dynamic aspects
of overlay topologies. However, little is known today about
the topological characteristics of popular P2P file sharing
applications, particularly about overlay dynamics. An impor-
tant factor to note is that properties of unstructured overlay
topologies cannot be easily derived from the neighbor selection
mechanisms due to implementation heterogeneity and dynamic
peer participation. Without a solid understanding of the topo-
logical characteristics of file-sharing applications, the actual
performance of the proposed search and replication techniques
in practice is unknown and cannot be meaningfully simulated.
In this case study, we examine one of the most popular file-
sharing systems, Gnutella, to cast light on the topological
properties of peer-to-peer systems.

Accurately capturing the overlay topology of a large scale
P2P network is challenging. A common approach is to use a
topology crawler [10], [11] that progressively queries peers to
determine their neighbors. The captured topology is asnapshot
of the system as a graph, with the peers represented as vertices
and the connections as edges. However, capturing accurate
snapshots is inherently difficult for two reasons:(i) overlay
topologies change as the crawler operates and(ii) a non-
negligible fraction of peers in each snapshot are not directly
reachable by the crawler. When a crawler is slow relative
to the rate of overlay change, the resulting snapshot will
be significantly distorted. Furthermore, verifying the accuracy
of a crawler’s snapshots is difficult due to the absence of
authoritative reference snapshots. We introduce techniques for
studying the accuracy of a crawler in Section II-E.

Previous studies that captured P2P overlay topologies with
a crawler either rely on slow crawlers, which inevitably lead
to significantly distorted snapshots of the overlay [10]–[12],
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or capture only a portion of the overlay [13], [14] which is
likely to be biased (and non-representative) [15]. These studies
do not examine the accuracy of their captured snapshots and
only conduct limited analysis of the overlay topology. More
importantly, these few studies (except [14]) are outdated (more
than three years old), since P2P filesharing applications have
significantly increased in size and incorporated several new
topological features over the past few years. An interesting
recent study [14] presents a high level characterization of
the two-tier Kazaa overlay topology. However, the study does
not explore graph properties of the overlay in detail. Finally,
to our knowledge, the dynamics of unstructured P2P overlay
topologies have not been studied in detail in any prior work.

A. Contributions

This paper presents (i) Cruiser, a fast crawler for two-
tier peer-to-peer systems such as Gnutella, and (ii) detailed
characterizations of both graph-related properties as well as the
dynamics of unstructured overlay topologies based on recent
large-scale and accurate measurements of the Gnutella network
using the crawler.1

We have recently developed a set of measurement tech-
niques and incorporated them into a fast parallel P2P crawler,
called Cruiser. Cruiser can accurately capture a complete
snapshot of the Gnutella network of more than one million
peers in just a few minutes. Its speed is several orders of
magnitude faster than any previously reported P2P crawler,
and thus its captured snapshots are significantly more accurate.
Capturing snapshots rapidly also allows us to examine the
dynamics of the overlay with finer granularity, which was
not feasible in previous studies. In Section II, we present
the different techniques used in Cruiser to achieve its high
speed, including leveraging the two-tier structure, a distributed
architecture, asynchronous communications, and choosing ap-
propriate timeout values. We also present techniques for quan-
tifying the measurement inaccuracy introduced by crawl speed
and present evidence that the error in Cruiser’s snapshots is
reasonably small.

Using Cruiser, we have captured several hundred snapshots
of the Gnutella network. We use these snapshots to character-
ize the Gnutella topology on two levels:

• Graph-related Properties of Individual Snapshots: We
treat individual snapshots of the overlay as graphs and
apply different forms of graph analysis to examine their
properties, in Section III.

• Dynamics of the Overlay: We present new methodologies
to examine the dynamics of the overlay and its evolution
over different timescales, in Section IV.

We investigate the underlying causes of the observed prop-
erties and dynamics of the overlay topology. Our main findings
can be summarized as follows:

• In contrast to earlier studies [10], [11], [20], we find that
node degree does not exhibit a power-law distribution.
We show how power-law degree distributions can be a
result of measurement artifacts.

1Earlier versions of different components of this work appeared in [16]–
[19].
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Fig. 1. Change in network size over months. Vertical bars showvariation
within a single day.

• While the Gnutella network has dramatically grown and
changed in many ways, it still exhibits the clustering
and the short path lengths of a small world network.
Furthermore, its overlay topology is highly resilient to
random peer departure and even systematic removal of
high-degree peers.

• Long-lived ultrapeers form a stable and densely con-
nectedcore overlay, providing stable and efficient con-
nectivity among participating peers despite the rapid
dynamics of peer participation.

• The longer a peer remains in the overlay, the more
it becomes clustered with other long-lived peers with
similar uptime2. In other words, connectivity within the
core overlay exhibits an “onion-like” bias where the
longest-lived peers form a well-connected core, and peers
with shorter uptime form layers with biased connectivity
to each other and to peers with higher uptime (i.e., inner
layers).

B. Why Examine Gnutella?

eDonkey, FastTrack, and Gnutella are the three most
popular P2P file-sharing applications today, according to
Slyck.com [1], a website which tracks the number of users
of different P2P applications. We elected to first focus on the
Gnutella network due to a number of considerations.

First, a variety of evidence indicates that the Gnutella
network has a large and growing population of active users
and generates considerable traffic volume. Figure 1 depicts the
average size of the Gnutella network over an eleven month
period ending February 2005, indicating that network size
has more than tripled (from 350,000 to1.3 million peers)
during our measurement period. We also observed time-of-
day effects in the size of captured snapshots, which is a good
indication of active user participation in the Gnutella network.
Also, examination of Internet2 measurement logs3 reveal that
the estimated Gnutella traffic measured on that network is
considerable and growing. For example, for the 6 week period
10/11/04 − 11/21/04, the Gnutella traffic on Internet2 was
estimated to be79.69 terabytes, up from21.52 terabytes for
a 6 week period (02/02/04− 03/14/04) earlier that year.

Second, Gnutella, which was one of the first decentralized
P2P systems, has evolved significantly since its inception in

2Throughout this paper, by “uptime” we mean the time that has elapsed
since the beginning of the peer’s session.

3http://netflow.internet2.edu/weekly/
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2000. While it is among the most studied P2P networks in the
literature, prior studies are at least three years old and consider
the earlier flat-network incarnation. A detailed measurement
study of the modern two-tier Gnutella network is therefore
timely and allows us to compare and contrast the behavior
today from the earlier measurement studies and gain insights
into the behavior and impact of the two-tier topologies adopted
by most modern P2P systems.

Third, our choice was also influenced by the fact that
Gnutella is the most popular P2P file-sharing network with
an open and well-documented protocol specification. This
eliminates (or at least significantly reduces) any incompati-
bility error in our measurement that could potentially occur
in other proprietary P2P applications that have been reverse-
engineered, such as FastTrack/Kazaa and eDonkey.

The rest of this paper is organized as follows. We de-
scribe the key features of Cruiser in Section II, empirically
explore the impact of crawling speed on snapshot accuracy,
and quantify the accuracy of Cruiser’s snapshots. Section III
presents a detailed characterization of graph-related properties
of individual snapshots and discusses the implications of our
findings. In Section IV, we examine overlay dynamics, their
underlying causes, and their implications for the design and
evaluation of P2P applications. Section V presents an overview
of related work, and Section VI concludes the paper.

II. CAPTURING ACCURATE SNAPSHOTS

In this section, we begin with a brief overview of modern
Gnutella as an example of a two-tier P2P system, and describe
the various technical challenges to capturing accurate snap-
shots of a dynamic unstructured P2P system. We then present
the design of a fast parallel P2P crawler, calledCruiser, which
incorporates a set of measurement techniques we develped to
address the above challenges. Finally we explore and quantify
the accuracy of the snapshots gathered by Cruiser.

A. Modern Gnutella

We briefly describe a few key features of modern Gnutella
[21] that are related to our study. The original Gnutella
protocol has limited scalability due to its flat overlay and
simple flooding scheme. To improve scalability, modern Gnu-
tella clients adopt atwo-tier overlay architecture. As shown
in Figure 2, in this architecture a subset of peers, called
ultrapeers(or super-peers), form atop-leveloverlay while the
majority of participating peers, calledleaf peers, are connected
to the top-level overlay through one or multiple ultrapeers.
Ultrapeers communicate with one another using a superset of
the original Gnutella protocol.4 When a leaf peer cannot find
an available ultrapeer, it reconfigures itself as an ultrapeer after
verifying that it has high bandwidth and can receive incoming
connections (i.e., is not firewalled). In this way, the network
maintains a proper ratio between ultrapeers and leaf peers.

4Initially the top-level overlay was composed of a mixture of Ultrapeers
and ordinary peers. After being deprecated for a few years, ordinary peers
are no longer permitted anywhere in the overlay. All peers must be either
ultrapeers or leaf peers.
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Fig. 2. Two-tier Topology of Modern Gnutella

FastTrack (or Kazaa) and eDonkey also use some variation of
this model.

Another key feature isDynamic Querying[22], which
adjusts the query scope to gather only enough results to satisfy
the user (typically 50–200 results). An ultrapeer forwards a
query to a subset of top-level neighbors using a low TTL.
From that point, the query propagates normally until the
TTL expires, and the ultrapeer waits for results. If enough
results are found, the query terminates. Otherwise, the ultra-
peer estimates how many more peers must be searched. The
ultrapeer then sends the query via additional neighbors with
a TTL estimated to return sufficient results. This process is
repeated if necessary. Each ultrapeer estimates the number
of visited ultrapeers through each neighbor based on the
following formula:

∑TTL−1

i=0
(d − 1)

i. This formula assumes
that all peers have the same node degree,d.

B. Challenges

To accurately characterize P2P overlay topologies, we need
to capturecompleteand accuratesnapshots. By “snapshot”,
we refer to a graph that captures all participating peers (as
nodes) and the connections between them (as edges) at a par-
ticular time. The only way to capture a complete snapshot is to
crawl the overlay. Given information about a handful of initial
peers, the crawler progressively contacts participating peers
and collects information about their neighbors. In practice,
capturing accurate snapshots is challenging for two reasons:
(i) The Dynamic Nature of Overlays: Crawlers are not
instantaneous and require time to capture a complete snapshot.
Because of the dynamic nature of peer participation and neigh-
bor selection, the longer a crawl takes, the more changes occur
in participating peers and their connections, and the more
distorted the captured snapshot becomes. More specifically,
any connection that is established or closed during a crawl
(i.e.,changing connections) is likely to be reported only by one
end of the connection. We note that there is no reliable way
to accurately resolve the status of changing peers or changing
connections. In a nutshell, any captured snapshot by a crawler
will be distorted, where the degree of distortion is a function of
the crawl duration relative to the rate of change in the overlay.
(ii) Unreachable Ultrapeers: A significant portion of discov-
ered peers in each snapshot are not directly reachable since
they have departed, reside behind a firewall, or are over-
loaded. Therefore, information about the connections between
unreachable ultrapeers will be missing from the captured
snapshots.
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Using either partial crawls [13] or via passive monitor-
ing [23] is not a reliable technique for gathering accurate
snapshots for the following reasons:(i) in the absence of
adequate knowledge about the properties and dynamics of the
overlay topology, it is difficult to collect unbiased samples. For
example, partial crawling of the network can easily result in a
snapshot that is biased towards peers with higher degree [15];
similarly passive monitoring by its nature is limited to informa-
tion gleamed from the communications that are visible to the
monitoring station(s). Also for both partial crawls and passive
monitoring, the introduced bias and its extent is unknown,
making it impossible to derive representative characterizations
for the whole network;(ii) some graph-level characteristics of
the overlay topology, such as the mean shortest path between
peers (which we discuss in Subsection III-B) cannot be derived
from partial snapshots. Because of these reasons, we attempt
to capture snapshots that are as complete as possible and use
them for our characterizations.

C. The Gnutella Cruiser

To minimize the distortion in captured snapshots caused
by the dynamic nature of the overlay, we have developed a
fast Gnutella crawler, calledCruiser. While the basic crawling
strategy employed by Cruiser is similar to other crawlers, it
improves the accuracy of captured snapshots by significantly
increasing the crawling speed (i.e., reducing crawl duration)
by using the following techniques.

First, Cruiser leverages the two-tier structure of the modern
Gnutella network by only crawling ultrapeers. Since each leaf
must be connected to an ultrapeer, this approach enables us to
capture all the nodes and links of the overlay by contacting
a relatively small fraction of all peers. Overall, this strategy
leads to around an 85% reduction in the duration of a crawl
without any loss of information.

Second, Cruiser crawls hundreds of peers in parallel using
asynchronous communications. While parallelism improves
performance, attempting to employ too much parallelism leads
to high CPU load and eventually an inability to keep up
with network traffic. Cruiser implements an adaptive load
management mechanism to ensure its CPU remains busy but
does not become overwhelmed. Towards this end, Cruiser
monitors its CPU load and adjusts its maximum number of par-
allel connections using an AIMD algorithm similar to TCP’s
congestion control mechanism. In practice, Cruiser typically
runs with close to 1,000 parallel connections, contributing
an additional speed-up of nearly three orders of magnitude,
compared to sequential crawling (e.g., [10]).

Third, Cruiser employs a master-slave architecture in order
to further increase the level of parallelism and utilize the
resources of multiple PCs. The master process coordinates
multiple slave processes that crawl disjoint portions of the
network in parallel. The master-slave architecture provides
an additional speedup proportional to the number of slave
machines.

Fourth, Cruiser uses an appropriate timeout length when
waiting for responses from peers. When peers are unrespon-
sive, it could take a long time to wait for TCP to time
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Fig. 3. Effects of the timeout length on crawl duration and snapshot
completeness

out. In our systems, a full TCP timeout to an unresponsive
address takes more than 3 minutes. While this is suitable for
many interactive and automated applications, we conducted
an evaluation of the cost versus benefit of different timeout
lengths for crawling. Figure 3 shows the duration of the crawl
and the percentage of peers that were unreachable as a function
of the timeout length. This figure shows that very low timeouts
(less than 10 seconds) result in a dramatic increase in the num-
ber of unreachable ultrapeers, while longer timeouts do not
significantly decrease the percent of unreachable ultrapeers.
In other words, if a peer has not responded after 10 seconds,
it is unlikely to ever respond. There are diminishing returns for
using longer timeout lengths, as the crawl duration (and thus
distortion) continues to increase. Therefore, we use a timeout
of 10 seconds, providing an additional speedup of more than
a factor of two.

We have experienced other system issues in the development
of Cruiser that are worth mentioning. In particular, we needed
to increase the limit on the number of open file descriptors on
the host systems. Otherwise, many connection attempts return
immediately with an automatic “Connection Refused” error.
In a similar vein, we increased the number of connections
that our lab firewall could track to prevent the firewall from
dropping packets due to this constraint.

These techniques collectively result in a significant increase
in crawling speed.Cruiser can capture the Gnutella network
with one million peers in around 7 minutes using six off-the-
shelf 1 GHz GNU/Linux boxes in our lab. Cruiser’s crawling
speed is about 140k peers/minute (by directly contacting
22k peers/minute). This is orders of magnitude faster than
previously reported crawlers (i.e., 2 hours for 30k peers
(250/minute) in [10], and 2 minutes for 5k peer (2.5k/minute)
in [13]) . While our crawling strategy is aggressive and our
crawler requires considerable local resources, it is not intrusive
for the remote peers, since each ultrapeer is contacted only
once per crawl.

Post-Processing:Once information is collected from all reach-
able peers, we perform some post-processing to remove any
obvious inconsistencies that might have been introduced due
to changes in the topology during the crawling period. Specif-
ically, we include edges even if they are only reported by
one peer, and treat a peer as an ultrapeer if it neighbors with
another ultrapeer or has any leaves. Due to the inconsistencies,
we might over-count edges by about 1% and ultrapeers by
about 0.5%.



5

D. Effect of Unreachable Ultrapeers

In this section, we carefully examine the effect of un-
reachable ultrapeers on the accuracy of captured snapshots.
Unreachable ultrapeers can introduce the following errors in
a captured snapshot:(i) including unreachable ultrapeers that
departed,(ii) missing links between unreachable ultrapeers and
their leaves, and(iii) missing links between two unreachable
ultrapeers.

Interestingly, our measurements revealed that some of the
unreachable ultrapeers are actually overwhelmed ultrapeers
that sporadically accept TCP connections and can be contacted
after several attempts. This transport-layer refusal means that
the application is not able to callaccept()sufficiently fast,
leading to a TCP listen buffer overflow. We also noticed that
connections to most of these overwhelmed ultrapeers exhibit
long RTT (> 1sec) and little to no loss. Since latency due to
a long queue in a router is typically accompanied by packet
loss, this suggests the peer’s CPU may be the bottleneck and
the operating system is taking a long time to process the
packets. Despite this finding, we did not incorporate a multiple
attempt strategy into the crawler for two reasons:(i) it only
marginally increases the number of reachable peers at the cost
of significantly increasing the duration of each crawl which
in turn increases distortion in captured snapshots, and(ii) it is
intrusive and may exacerbate the existing problem.

It is important to determine what portion of unreachable
ultrapeers are departed versus firewalled or overloaded, be-
cause each group introduces a different error on the snapshot.
However, there is no reliable test to distinguish the three
cases, because firewalls can time out or refuse connections
depending on their configuration. Previous studies assume that
these unreachable ultrapeers are either departed or firewalled
and exclude them from their snapshots.

To determine the status of unreachable ultrapeers, we devise
the following technique to identify the fraction of unreachable
ultrapeers that departed. We perform back-to-back crawls
to capture two snapshots. We can then conclude that the
unreachable ultrapeers in the first snapshot that are missing
from the second snapshot departed in the first snapshot. This
approach reveals that departed peers constitute only 2–3% of
peers in each snapshot.

Finally, we examine those unreachable ultrapeers that time
out. Since overwhelmed ultrapeers refuse connections, we
hypothesized that this group of peers is firewalled. To verify
this hypothesis, we randomly selected 1000 (about 3% of)
peers that were unreachable due to time out, and re-contacted
them every 5 minutes for 7 hours.5 Interestingly, more than
92% of these peers were never reachable at all. This suggests
that the timeout is a good indicator for firewalled peers.In
summary, our investigation reveals that in each crawl, 30%–
38% of discovered peers are unreachable. In this group,
the breakdown is as follows: 2%–3% departed, 15%–24%
firewalled, and the remaining unreachable ultrapeers (3%–
21%) are either also firewalled or overwhelmed ultrapeers.
Since Cruiser only needs to contacteither end of an edge, it

5Note that each attempt translates into several attempts by TCP to establish
a connection by sending SYN packets.

is able to discover at least 85%–91% of edges. Since firewalled
peers cannot directly connect together (i.e., cannot be located
at both ends of a missing edge) and they constitute more than
half of the unreachable ultrapeers, the actual portion of missing
edges is considerably smaller.

E. Quantifying Snapshot Accuracy

In this section, we rigorously examine the accuracy of
captured snapshots by Crusier. Snapshot accuracy can not be
directly measured since there is no reference snapshot for
comparison. Therefore, we indirectly quantify the the effect of
crawling speed and duration on two dimensions of snapshot
accuracy: completeness and distortion.
Impact of Crawling Speed: To examine the impact of
crawling speed on the accuracy of captured snapshots, we
adjust the crawling speed (and thus the crawl duration) of
Cruiser by changing the number of parallel connections that
each slave process can open. Using this technique, Cruiser
can effectively emulate the behavior of previously reported
crawlers which have a lower degree of concurrency.

We define theedge distortionof a snapshot as the percent-
age of edges that are reported by only one of two contacted
peers, i.e., those created or torn down during the crawl.
Unfortunately, there is no straightforward way to validate a
snapshot to check for peer distortion. Instead, we examine
the sets of peers from two snapshots captured back-to-back
(P1 and P2). The first snapshot (P1) serves as a reference
snapshot, captured at maximum speed, while we vary the
speed of the second snapshot (P2). We then define thepeer
distortion as δ = |P1∆P2|

|P1|+|P2|
, where∆ denotes the symmetric

difference operation. In other words, peer distortion is 0% if
the snapshots are identical and 100% if the snapshots do not
have any common peers.

Figure 4 depicts peer and edge distortion as a function of
crawl duration. This figure demonstrates that the accuracy of
snapshots decreases with the duration of the crawl, because the
increased distortion reflects changes in the topology that occur
while the crawler is running. Crawlers that take 1–2 hours
(comparable to those in earlier works) have a peer distortion
of 9%–15% and an edge distortion of 31%–48%, while at full
speed, Cruiser exhibits a peer distortion of only 4% and an
edge distortion of only 13%.
Completeness of Snapshots: To examine the completeness of
snapshots captured by Cruiser, we keep track of the following
variables during each crawl: the number of discovered top-
level peers, the number of leaves, the number of links between
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ultrapeers, and the number of links to leaves. Figure 5 presents
variations of these four variables as a function of the number
of contacted peers in a sample crawl. Note that the number of
discovered top-level peers as well as leaves curve off which is
evidence that Cruiser has captured nearly all the participating
peers. Links between top-level peers somewhat curves off.
Finally, links to leaves is necessarily linearly increasing with
the number of top-level peers because each top-level peers
provide a unique set of links between itself and its leaves.
Completeness-Duration Tradeoff: To examine the
completeness-duration tradeoff for captured snapshots,
we modified Cruiser to stop the crawl after a specified period.
Then, we performed two back-to-back crawls and repeated
this process for different durations. Figure 6 demonstrates the
completeness-duration tradeoff. During short crawls (on the
left side of the graph),δ is high because the captured snapshot
is incomplete, and each crawl captures a different subset.
As the duration of the crawl increases,δ decreases which
indicates that the captured snapshot becomes more complete.
Increasing the crawl length beyond four minutes does not
decreaseδ any further, and achieves only a marginal increase
in the number of discovered peers (i.e., completeness). This
figure reveals a few important points. First, there exists
a “sweet spot” for crawl duration beyond which crawling
has diminishing returns if the goal is simply to capture the
population. Second, for sufficiently long crawls, Cruiser can
capture a relatively un-stretched snapshot. Third, the change
of δ = 4% is an upper-bound on the distortion due to the
passage of time as Cruiser runs. The relatively flat delta on
the right suggest that around 4% of the network is unstable
and turns over quickly.

In summary, our evaluations reveal that(i) Cruiser captures
nearly all ultrapeers and the pair-wise connections between
them and the majority of connections to leaves;(ii) both node
distortion and edge distortion in captured snapshots increases
linearly with the crawl duration; and(iii) snapshots captured
by Cruiser have little distortion. In particular, we found that
two back-to-back snapshots differed only 4% in their peer
populations.

F. Data Set

We make use of several hundred snapshots of the Gnutella
network captured during the past eleven months (Apr. 2004–
Feb. 2005) with Cruiser. In particular, we collected back-
to-back snapshots for several two-day intervals as well as
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runs with standard deviation shown.

snapshots from several times of the day to ensure that captured
snapshots are representative. In Section III, we use four of
these snapshots to illustrate graph properties of the overlay
topology. In Section IV, we use sets of hundreds of back-to-
back snapshots to examine how the overlay topology evolves
with time.

III. OVERLAY GRAPH PROPERTIES

The two-tier overlay topology in modern Gnutella (as well
as other unstructured P2P networks) consists of ultrapeers that
form a “spaghetti-like” top-level overlay and a large group of
leaf peers that are connected to the top-level through multiple
ultrapeers. We treat individual snapshots of the overlay as
graphs and apply different forms of graph analysis to ex-
amine their properties. We pay special attention to the top-
level overlay since it is the core component of the topology.
Throughout our analysis, we compare our findings with similar
results reported in previous studies. As the top-level of the
modern Gnutella network grew out of the original Gnutella
topology, we compare properties of the top-level of the modern
Gnutella network with earlier work on the original Gnutella
topology. However, it is important to note that we are unable to
determine whether the reported differences (or similarities) are
due to changes in the Gnutella network or due to inaccuracy
in the captured snapshots of previous studies.

Table I presents summary information of four sample snap-
shots after post-processing. The results in this section are
primarily from the snapshots in Table I. However, we have
examined many other snapshots and observed similar trends
and behaviors. Therefore, we believe the presented results are
representative. Presenting different angles of the same subset
of snapshots allows us to conduct cross comparisons and also
relate various findings.

In this section, we explore the node degree distribution
in Subsection III-A, the reachability and pairwise distance
properties of the overlay in Subsection III-B, small world
characteristics in Subsection III-C, and the resilience of the
overlay in Subsection III-D.
Implementation Heterogeneity:The open nature of the Gnu-
tella protocol has led to several interoperable implementations.
It is important to determine the distribution of different im-
plementations (and configurations) among participating peers
since the implementation design choices directly affect the
overall properties of the overlay topology. This will help us
explain some of the observed properties of the overlay. Table II
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Fig. 7. Different angles of the top-level degree distribution in Gnutella topology

Crawl Date Total Nodes Leaves Top-level Unreachable Top-Level Edges
09/27/04 725,120 614,912 110,208 35,796 1,212,772
10/11/04 779,535 662,568 116,967 41,192 1,244,219
10/18/04 806,948 686,719 120,229 36,035 1,331,745
02/02/05 1,031,471 873,130 158,345 39,283 1,964,121

TABLE I

SAMPLE CRAWL STATISTICS

presents the distribution of different implementations across
discovered ultrapeers. This table shows that a clear majority
of contacted ultrapeers use the LimeWire implementation. We
also discovered that a majority of LimeWire ultrapeers (around
94%) use the most recent version of the software available
at the time of the crawl. These results reveal that while
heterogeneity exists, nearly all Gnutella users run LimeWire
or BearShare.

We are particularly interested in the number of connections
that are used by each implementation since this design choice
directly affects the degree distribution of the overall topology.
For LimeWire, this information can readily be obtained from
the source code: LimeWire attempts to maintain 27 neighbors
at minimum and will accept up to 32 at maximum. However,
implementations such as BearShare are not open-source. Ad-
ditionally, users can always change the source code of open
implementations. Thus, we must still collect this information
from running ultrapeers in action.

Our measurements reveal that LimeWire’s and BearShare’s
ultrapeer implementations prefer to serve 30 and 45 leaves,
respectively, whereas both try to maintain around 30 neighbors
in the top-level overlay.

A. Node Degree Distributions

The introduction of the two-tier architecture in the overlay
topology along with the distinction between ultrapeers and leaf
peers in the modern Gnutella protocol demands a close exam-
ination of the different degree distributions among different
group of peers.
Node Degree in the Top-Level Overlay:Previous studies
reported that the distribution of node degree in the Gnutella
network exhibited a power-law distribution [10], [11], [24] and
later changed to a two-segment power-law distribution [10],

Implementation: LimeWire BearShare Other
Percentage: 74%–77% 19%–20% 4%–6%

TABLE II

DISTRIBUTION OF IMPLEMENTATIONS

[20]. Figure 8(a) depicts the distribution of node degree in
log-log scale among all peers in the top-level overlay for the
10/18/04 snapshot (labeled “Fast Crawl”). This distribution has
a spike around 30 and does not follow a power-law, which
would exhibit a line-like tail when plotted in log-log scale.
A key question isto what extent this difference in degree
distribution is due to the change in the overlay structure versus
error in captured snapshots by earlier studies. To examine this
question, we captured a distorted snapshot by a slow crawler6

which is similar to the 50-connection crawler used in an earlier
study [10]. Figure 8(a) depicts the degree distribution based on
this distorted snapshot in log-log scale, which is similar to the
power-law distribution reported in [10, Fig. 6].7 If we further
slow down the crawling speed, the resulting snapshots contain
greater edge distortion and the derived degree distribution
looks more similar to a single-piece power-law distribution, the
result reported by earlier studies [11], [24].To a slow crawler,
peers with long uptimes appear as high degree because many
short-lived peers report them as neighbors. However, this is
a mischaracterization since these short-lived peers are not
all present at the same time. More importantly, this finding
demonstrates that using distorted snapshots that are captured
by slow crawlers can easily lead to incorrect characterizations
of P2P overlays.

Figure 7(a) presents the degree distribution of top-level
peers for the four snapshots presented in Table I, in linear
scale. Because we were unable to contact every top-level peer,
the distribution in Figure 7(a) is biased slightly low since
it does not include all edges.8 To address this problem, we
split the data into Figures 7(b) and 7(c), which depict the
neighbor degree distribution for reachable and unreachable
peers, respectively. The data in Figure 7(b) is unbiased since
it includes data only from peers we contacted successfully,

6To reduce the crawling speed, we simply limited the degree of concurrency
(i.e., number of parallel connections) to 60 in Cruiser.

7To properly compare these snapshots with different sizes, they-axis in
Figure 8(a) is normalized by the number of peers in the snapshot.

8The degree distribution for all the presented results is limited to 50, which
includes all but a small percentage (< 1%) of peers with larger degree that
are discussed later.
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i.e., we discovered every edge connected to these peers. The
spike around a degree of 30 is more pronounced in this
figure. Figure 7(c) presents the observed degree distribution
for unreachable top-level peers (i.e., overloaded or NATed).
This distribution is biased low since we cannot observe the
connections between pairs of these peers. In this data, a much
greater fraction of peers have an observed degree below 30,
compared to Figure 7(b). Many of these peers probably have
a true degree closer to 30, with the true distribution likely
similar to that in Figure 7(b).

The degree distribution among contacted top-level peers has
two distinct segments around a spike in degree of 30, resulting
from LimeWire and BearShare’s behavior of attempting to
maintain 30 neighbors. The few peers with higher degree
represent other implementations that try to maintain a higher
node degree or the rare user who has modified their client soft-
ware. The peers with lower degree are peers which have not
yet established 30 connections. In other words, the observed
degree for these peers is temporary. They are in a state of
flux, working on opening more connections to increase their
degree. To verify this hypothesis, we plot the mean degree of
peers as a function of their uptime in Figure 9, which shows
uptime and degree are correlated. The standard deviation for
these measurements is quite large (around 7–13), indicating
high variability. When peers first arrive, they quickly establish
several connections. However, since node churn is high, they
are constantly losing connections and establishing new ones.
As time passes, long-lived peers gradually accumulate stable
connections to other long-lived peers. We further explore this
issue in Section IV when we examine overlay dynamics.
Node Degree For Leaves:To characterize properties of the
two-tier topology, we have examined the degree distribution
between the top-level overlay and leaves, and vice versa.
Figure 8(b) presents the degree distribution of connections

from ultrapeers to leaf peers. A distinct spike at 30 is clearly
visible, with a secondary spike at 45. The first two spikes are
due to the corresponding parameters used in the LimeWire and
BearShare implementations, respectively. This figure shows
that a significant minority of ultrapeers are connected to less
than 30 leaf peers, which indicates availability in the system
to accommodate more leaf peers.

In Figure 8(c), we present the degree of connectivity for
leaf peers. This result reveals that most leaf peers connect
to three ultrapeers or fewer (the behavior of LimeWire), a
small fraction of leaves connect to several ultrapeers, and a
few leaves (< 0.02%) connect to an extremely large number
of ultrapeers (100–3000).
Implications of High Degree Peers:In all degree distribu-
tions in this subsection, we observed a few outlier peers with
an unusually high degree of connectivity. The main incentive
for these peers is to reduce their mean distance to other
peers. To quantify the benefit of this strategy, Figure 10(a)
presents the mean distance to other peers as a function of
node degree, averaged across peers with the same degree. We
show this for both the top-level overlay and across all peers.
This figure shows that the mean path to participating peers
exponentially decreases with degree. In other words, there are
steeply diminishing returns for increasing degree as a way of
decreasing distance to other peers.

Turning our attention to the effects of high-degree peers on
the overlay, for scoped flood-based querying, the traffic these
nodes must handle is proportional to their degree for leaves
and proportional to the square of their degree for ultrapeers.
Note that high-degree ultrapeers may not be able, or may not
choose, to route all of the traffic between their neighbors. Thus,
they may not actually provide as much connectivity as they
appear to, affecting the performance of the overlay.

During our analysis, we discovered around 20 ultrapeers
(all on the same /24 subnet) with an extremely high degree
(between 2500 to 3500) in our snapshots. These high-degree
peers are widely visible throughout the overlay, and thus
receive a significant portion of exchanged queries among other
peers. We directly connected to these high degree peers and
found they do not actually forward any traffic9. We removed
these inactive high degree peers from our snapshots when

9It appears that these peers monitor exchanged messages among other
participating peers. They could be trying to locate copyright infringement
among Gnutella users, collecting ratings information to measure which songs
consumers might like to buy, or performing a measurement study of their
own.
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Fig. 11. Different angles on path lengths and resilience

considering path lengths since their presence would artificially
improve the apparent connectivity of the overlay.

B. Reachability

The degree distribution suggests the overlay topology might
have a low diameter, given the moderately high degree of
most peers. To explore the distances between peers in more
detail, we examine two equally important properties of overlay
topologies that express the reachability of queries throughout
the overlay:(i) the reachability of flood-based queries, and(ii)
the pairwise distance between arbitrary pairs of peers.
Reachability of Flood-Based Query:Figure 10(b) depicts the
meannumber of newly and total visited peers as a function
of TTL, averaged across top-level peers in a single snapshot.
The shape of this figure is similar to the result that was
reported by Lv et al. [20, Figure 3] which was captured in
October 2000, with a significantly smaller number of peers
(less than 5000). Both results indicate that the number of newly
visited peers exponentially grows with increasing TTL up to a
certain threshold and has diminishing returns afterwards. This
illustrates that the dramatic growth of network size has been
effectively balanced by the introduction of ultrapeers and an
increase in node degree. Thus, while the network has changed
in many ways, the percentage (but not absolute number) of
newly reached peers per TTL has remained relatively stable.
Figure 10(b) also shows the number of newly visited peers
predicted by the Dynamic Querying formula (assuming a node
degree of 30), which we presented in Section II-A. This result
indicates that the formula closely predicts the number of newly
visited peers for TTL values less than 5. Beyond 5, the query

has almost completely saturated the network.

Figure 10(c) shows a different angle of reachability for
the same snapshot by presenting the Cumulative Distribution
Function (CDF) of the number of visited peers from top-
level peers for different TTL values. This figure shows the
distribution of reachability for flood-based queries among
participating peers. We use a logarithmicx-scale to magnify
the left part of the figure for lower TTL values. The figure
illustrates two interesting points: First, the total number of
visited peers using a TTL ofn is almost always an order of
magnitude higher compared to using a TTL of(n−1). In other
words, TTL is the primary determinant of the mean number of
newly visited peers independent of a peer’s location. Second,
the distribution of newly visited peers for each TTL is not
uniform among all peers. As TTL increases, this distribution
becomes more skewed (considering the logarithmic scale forx
axis). This is a direct effect of node degree. More specifically,
if a peer or one of its neighbors has a very high degree, its
flood-based query reaches a proportionally larger number of
peers.

Pair-wise Distance: Figure 11(a) shows the distribution of
shortest-path lengths in terms of overlay hops among all pairs
of top-level peers from four snapshots. Ripeanu et al. [10]
presented a similar distribution for the shortest-path length
based on snapshots that were collected between November
2000 and June 2001 with 30,000 peers. Comparing these
results reveals two differences:(i) the pairwise path between
peers over the modern Gnutella topology issignificantly more
homogeneous in length, with shorter mean valuecompared
with a few years ago. More specifically, the old snapshot
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Graph Lactual Lrandom Cactual Crandom

New Gnutella 4.17–4.23 3.75 0.018 0.00038
Old Gnutella [12] 3.30–4.42 3.66 0.02 0.002

Movie Actors [25] 3.65 2.99 0.79 0.00027
Power Grid [25] 18.7 12.4 0.08 0.005
C. Elegans [25] 2.65 2.25 0.28 0.05

TABLE III

SMALL WORLD CHARACTERISTICS

shows 40% and 50% of all paths have a length of 4 and 5
hops whereas our results show a surprising 60% of all paths
having a length of 4.(ii) the results from our snapshots are
nearly identical; whereas in [10], there is considerable variance
from one crawl to another. In summary,the path lengths have
become shorter, more homogeneous, and their distribution is
more stable.
Effect of Two-Tier Topology: To examine the effect of the
two-tier overlay topology on path length, we also plot the
path length between all peers (including leaves) in 11(b).
If each leaf had only one ultrapeer, the distribution of path
length between leaves would look just like the top-level path
lengths (Figure 11(a)), but right-shifted by two. However,
since each leaf peer has multiple parents, the path length
distribution between leaves (and thus for all peers) has a more
subtle relationship with Figure 11(a). Comparing Figures 11(a)
and 11(b) shows us the cost introduced by using a two-tier
overlay. In the top-level, most paths are of length 4. Among
leaves, we see that around 50% of paths are of length 5 and
the other 50% are of length 6. Thus, getting to and from the
top-level overlay introduces an increase of 1 to 2 overlay hops.

C. Small World

Recent studies have shown that many biological and man-
made graphs (e.g., collaborations among actors, the electrical
grid, and the WWW graph) exhibit “small world” properties.
In these graphs, the mean pairwise distance between nodes
is small and nodes are highly clustered compared to random
graphs with the same number of vertices and edges. A study by
Jovanovic et al. [12] in November–December 2000 concluded
that the Gnutella network exhibits small world properties as
well. Our goal is to verify to what extent recent top-level
topologies of the Gnutella network still exhibit small world
properties despite growth in overlay population, an increase in
node degree, and changes in overlay structure. The clustering
coefficient of a graph,Cactual, represents how frequently
each node’s neighbors are also neighbors, and is defined as
follows [25]:

C(i) =
D(i)

Dmax(i)
, Cactual =

∑
i C(i)

|V |

D(i), Dmax(i) and |V | denote the number of edges between
neighbors of nodei, the maximum possible number of edges
between neighbors of nodei, and the number of vertices
in the graph, respectively. For example, if nodeA has 3
neighbors, they could have at most 3 edges between them,
soDmax(A) = 3. If only two of them are connected together,
that’s one edge and we haveD(A) = 1 and C(A) = 1

3
.

C(i) is not defined for nodes with fewer than 2 neighbors.

Thus, we simply exclude these nodes from the computation of
Cactual. Table III presents ranges for the clustering coefficient
(Cactual) and mean path length (Lactual) for the Gnutella
snapshots from Table I as well as the mean values from four
random graphs with the same number of vertices and edges
(i.e., Crandom and Lrandom). Because computing the true
mean path lengths (Lrandom) is computationally expensive
for large graphs, we used the mean of 500 sample paths
selected uniformly at random. We also include the information
presented by Jovanovic et al. [12] and three classic small world
graphs [25].

A graph is loosely identified as a small world when its
mean path length is close to random graphs with the same
number of edge and vertices, but its clustering coefficient is
orders of magnitude larger than the corresponding random
graph (i.e., Lactual and Lrandom are close, butCactual is
orders of magnitude larger thanCrandom). All three classic
small world graphs in the table exhibit variants of these
conditions. Snapshots of modern Gnutella clearly satisfy these
conditions which means that modern Gnutella still exhibits
small world properties. The observed clustering could be a
result of factors like peer bootstrapping, the peer discovery
mechanism, and overlay dynamics. Further analysis is needed
to better understand the underlying causes. Section IV shows
how peer churn is one factor that contributes to clustering.

D. Resilience

We also examine the resilience in different snapshots of the
Gnutella overlay topology using two different types of node
removal:(i) random removal, and(ii) pathologically removing
the highest-degree nodes first. An early study [13] conducted
the same analysis on Gnutella based on a partial topology
snapshot, finding that the overlay is resilient to random depar-
tures, but under pathological node removal quickly becomes
very fragmented (after removing just 4% of nodes).

Figure 11(c) depicts the fraction of remaining nodes in
the topology which remain connected, in both the random
and pathological node removal.This figure clearly shows the
Gnutella overlay is not only extremely robust to random peer
removals, but it also exhibits high resilience to pathological
node removal.Even after removing 85% of peers randomly,
90% of the remaining nodes are still connected. For the patho-
logical case, after removing the 50% of peers with the highest-
degree, 75% of the remaining nodes remain connected. There
are two possible factors contributing to this difference with
earlier results [13]:(i) the higher median node degree of most
nodes in modern Gnutella, and(ii) a non-negligible number of
missing nodes and edges in the partial snapshot of the earlier
study. Our result implies that complex overlay construction
algorithms (e.g., [26]) are not a necessary prerequisite for
ensuring resilience in unstructured overlays.

IV. OVERLAY DYNAMICS

In Section III, we characterized the graph-related properties
of individual snapshots of the overlay topology. However,
in practice the overlay topology is inherently dynamic since
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connections (i.e., edges) are constantly changing. These dy-
namics can significantly affect the main functionality of the
overlay which is to provide connectivity and efficiently route
the messages (e.g., queries, responses) among participating
peers. Characterizing overlay dynamics enables us to examine
their impact on performance of P2P applications. For example,
a query or response message can be routed differently or even
dropped as a result of changes in the edges of the overlay.
To our knowledge, aggregate dynamics of unstructured P2P
overlay have not been studied and thus these dynamics can not
be incorporated in meaningful simulation-based evaluations of
P2P protocols.

There are two basic causes for dynamics in the overlay
topology as follows:

• Dynamics of Neighbor Selection: Two existing peers in
the overlay may establish a new (or tear down an existing)
connection between them. Such a change in edges is not
triggered by users and thusprotocol-driven.

• Dynamics of Peer Participation: When a peer joins (or
leaves) the network, it establishes (or tears down) its
connections to other participating peers in the overlay.
Therefore, these changes in overlay edges areuser-
driven.10

Note that the user-driven dynamics of peer participation are
likely to exhibit similar distributions in different P2P applica-
tions [27], [28]. Therefore, identifying the effect of user-driven
dynamics on the overlay provides useful insights for the design
and evaluation of other unstructured P2P overlays.

To characterize the dynamics of the Gnutella network, we
investigate(i) whether a subset of participating peers form
a relatively stable core for the overlay,(ii) what properties
(such as size, diameter, degree of connectivity, and clustering)
this stable core exhibits, and(iii) what underlying factors
contribute to the formation and properties of such a stable
core
Methodology: By definition, if the overlay has a stable core,
it must be composed of the long-lived ultrapeers. Short-lived
peers are not stable, and leaf peers are not part of the core
since they do not provide connectivity. Therefore, to identify
the stable core of the overlay at any point of time, we select the

10Note that Gnutella does not run as a daemon. Therefore, peer ar-
rival/departure is a moderately reliable indication of user action. We are
mindful that dynamic IP addresses could force some peers to leave and rejoin
the network with a new address. Nevertheless, we group such changes as
user-driven since they are beyond the control of the P2P protocol.

subset of top-level peers who have been part of the overlay for
at leastτ minutes,i.e., whose uptime is longer than a threshold
τ . We call this subset of peers thestable peers, or SP (τ), and
only focus on this subset in our analysis. By changingτ , we
can control the minimum uptime of selected peers and thus
the relative stability and size ofSP (τ).

To conduct this analysis, we use several slices of our dataset
where each slice represents a period of 48 hours of continuous
back-to-back snapshots of the overlay topology, with hundreds
of snapshots per slice. We treat the last captured snapshot
over each 48 hour period as a reference snapshot. Any peer
in the reference snapshot must have joined the overlay either
before or during our measurement period. By looking back
through the snapshots, we can determine (with accuracy of a
few minutes) the arrival time of all peers that joined during
the measurement period. For those peers that were present
for the entire measurement period, we can conclude that their
uptime is at least 48 hours. Having this information, we can
annotate all peers in the reference snapshot with their uptime
information. Figure 12(a) depicts the CCDF of uptime among
existing peers in the reference snapshot for several slices
(Figure 12(b) presents the initial part of the same graph). In
essence, this figure presents the distribution of uptime among
participating peers in steady state, implying that the size of
SP (τ) exponentially decreases withτ . This behavior is more
visible over longer time scales. Furthermore, this also implies
that the total number of possible connections withinSP (τ)
dramatically decreases withτ .
Internal Connectivity Within the Stable Core: To study dif-
ferent angles of connectivity among ultrapeers withinSP (τ),
we focus only on the connections of the overlay where both
end points are insideSP (τ), i.e., we remove all edges to peers
outsideSP (τ). We call this the stable core overlay orSC(τ).
The first question is:how much connectivity is there between
the peers inSC(τ)? Figure 13(a) depicts the percentage of
ultrapeers withinSC(τ) that are in the largest connected
component, as a function ofτ . This figure demonstrates that
while the fraction of connected peers slightly decreases with
τ over long time scales, a significant majority (86%–94%) of
peers withinSC(τ) remain connected in one large component.
The minor drop in the percentage of connected peers is due
to the exponential decrease in number of peers withinSC(τ),
which in turn reduces the number of edges among peers, and
thus affects the opportunity for pairwise connectivity.

The second question is:how clustered and dense is the



12

86

88

90

92

94

96

98

100

0 5 10 15 20 25 30 35 40 45

L
ar

ge
st

C
om

po
ne

nt
(%

)

Time in top level threshold (hours)

10/16/04
12/23/04
12/29/04

(a) Percentage of peers in the stable core that
are part of the core’s largest connect
component

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45

D
is

ta
nc

e
(h

op
s)

Time in top level threshold (hours)
(b) Diameter (top) and characteristic path

length (bottom) of the largest connected
component of the stable core

0

0.005

0.01

0.015

0.02

0.025

0.03

0 5 10 15 20 25 30 35 40 45

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

Time in top level threshold (hours)

10/16/04
12/29/04
12/23/04

Entire Top-Level

(c) Clustering coefficient within the largest
connected component of the stable core

Fig. 13. Different angles of connectivity with the stable core

connected portion of the core overlay?Figure 13(b) shows
the diameter and characteristic (mean) path length among
fully connected peers in the largest component of the stable
core overlay. Interestingly, both the mean path length and the
diameter of the stable core overlay remain relatively stable as
τ increases, despite the dramatic drop in number of edges.
Furthermore, the mean path length for the stable core overlay,
even when it has a very small population (only 10% of top-
level peers forτ=45h), is around 5 hops, very close to the
mean path length for the entire top-level overlay (4.17–4.23
from Table III). Finally, Figure 13(c) depicts the evolution
of the clustering coefficient for the stable core overlay asτ
increases, along with the clustering coefficient for the entire
top-level overlay in the reference snapshot. This figure shows
two important points:(i) peers within the stable core overlay
are more clustered together than the entire top-level overlay
on average, and, more importantly,(ii) connectivity among
peers within the stable core overlay becomes increasingly more
clustered withτ .
External Connectivity to/from the Stable Core: To quantify
the connectivity betweenSC(τ) and the rest of the overlay, we
examined whether peers withinSC(τ) have a higher tendency
to connect to each other rather than peers outside the core.
To quantify any potential tendency, we generate a control
graph by randomizing the connections between peers. That
is, given a snapshot,G(V, E), we randomly generate a graph
G′(V, R) using the same set of peers (V ) such that the degree
of each peer is unchanged,i.e., (|Rij ∀ j| = |Eij ∀ j|)∀ i. The
randomized version gives us a control for the number of edges
internal toSC(τ) that arise purely as a result of the degree
distribution of the graph. We can then compare the number of
edges internal toSC(τ) in the snapshot with the number in
the randomized version as follows:

|Eij ∀ i, j ∈ SC| − |Rij ∀ i, j ∈ SC|

|Rij ∀ i, j ∈ SC|

This captures the percentage increase in internal edges com-
pared to the expected value, and is plotted as a function of
τ in Figure 12(c). The figure demonstrates that the longer a
peer remains in the network, the more biased its connectivity
becomes towards peers with the same or higher uptime.
The characteristics of internal and external connectivities for
SC(τ) imply that the longer a peer remains in the overlay, the
more likely it establishes connections to peers with equal or
higher uptimes,i.e., the more biased its connectivity becomes

toward peers with higher uptime. Since connections for all
participating peers exhibit the same behavior, connectivity of
the overlay exhibits a biased “onion-like” layering where peers
with similar uptime (a layer) have a tendency to be connected
to peers with the same or higher uptime (internal layers of the
onion). Since the size ofSP (τ) decreases withτ , this means
that internal layers are both smaller and more clustered.
Implications of Stable and Layered Core Overlay: The
onion-like connectivity of the unstructured overlay implies that
all peers within the core do not depend on peers outside the
core for reachability. In other words, the core overlay provides
a stable and efficient backbone for the entire top-level overlay
that ensures connectivity among all participating peers despite
the high rate of dynamics among peers outside the core.

A. Examining Underlying Causes

A key question is:how does this onion-like layered connec-
tivity form?To address this issue, we quantify the contribution
of user-driven and protocol-driven changes to the edges of the
overlay. We can distinguish protocol-driven versus user-driven
changes in edges between two snapshots of the overlay as
follows: if at least one of the endpoints for a changing edge
has arrived (or departed) between two snapshots, that change
is user-driven. Otherwise, a changing edge is protocol-driven.
To answer the above question, we examine a 48-hour slice
of back-to-back snapshots from 10/14/2004 to 10/16/2004,
using the first snapshot as a reference. Given a slice, we
can detect new or missing edges in any snapshot compared
to the reference snapshot, for peers in both snapshots. Let
δp− andδu− (δp+ andδu+) denote the percentage of missing
(and new) edges in a snapshot due to protocol-driven (p)

0

20

40

60

80

100

0 200 400

P
er

ce
nt

ag
e

Time since beginning of window (minutes)

δ−
δu−

δp−

(a) Removed edges

0

20

40

60

80

100

0 200 400

P
er

ce
nt

ag
e

δ+
δu+

δp+

(b) Added edges

Fig. 14. Contribution of user- and protocol-driven dynamics in variations of
edges in the overlay



13

and user-driven (u) causes, relative to the reference snapshot.
Note thatδp and δu are by definition cumulative since the
reference snapshot does not change. Figure 14(a) and 14(b)
depict δ−=δp−+δu− and δ+=δp++δu+. The left graph (δ−)
shows that around 20% and 30% of edges in the overlay are
removed due to protocol-driven and user-driven factors during
the first 100 minutes, respectively. After this period, almost all
removed edges are due to departing peers. Similarly, from the
right graph (δ+), many edges are added during the first 100
minutes due to both protocol-driven factors and the arrival of
new peers. After this period, almost all new edges involve a
newly arriving peer. These results show two important points:
First, each peer may establish and tear down many connections
to other peers during the initial 100 minutes of its uptime. But
peers with higher uptime (i.e., peers insideSC(τ) for τ ≥ 100
min) maintain their connections to their remaining long-lived
neighbors, and only add (or drop) connections to arriving (or
departing) peers. This behavior appears to explain the forma-
tion of the biased onion-like layering in connectivity within
the overlay. Second, user-driven dynamics are the dominant
factor in long-term changes of the overlay. Since dynamics
of peer participations exhibit rather similar characteristics in
different P2P systems [27], other Gnutella-like overlays are
likely to show similar behavior. We plan to conduct further
investigations to better understand the underlying dynamics
that contribute to this behavior.

V. RELATED WORK

In an extension of the work of this paper, in [29] we
explore long-term fluctuations in the structure of the Gnutella
overlay topology over a 1.5 year period, as well as examine
correlations between the overlay structure and the geographic
location of peers. In [30], we extend Cruiser to capture
the list of files shared by each peer and characterize the
static, topological, and dynamic properties of available files
in Gnutella.

As listed throughout this paper, there are a handful of
prior studies which also perform a case study of Gnutella
to characterize peer-to-peer overlay topologies in file-sharing
applications [10], [12], [20], [24]. These studies are more
than three years old, do not verify the accuracy of their cap-
tured snapshots, and conduct only limited analysis. A recent
study [14] uses both passive measurement and active probing
of 900 super nodes to study behavior of the Kaaza overlay. It
mostly focuses on the number of observed connections (within
the top-level overlay and from the top-level overlay to leaf
nodes) and their evolution with time. However it does not
examine detailed graph-related properties of the overlay, or
the collective dynamics of the entire overlay topology, both of
which are investigated in this paper.

There are a wealth of measurement studies on other prop-
erties of peer-to-peer systems. These studies cover several
topics:(i) file characteristics [31]–[34],(ii) transfer character-
istics [32], [35],(iii) peer characteristics [13], [23],(vi) query
characteristics [33], [36]–[38], and(v) comparisons of different
implementations [39], [40]. Since they explore different as-
pects of peer-to-peer networks, these studies complement our

work. There are also several modeling and simulation-based
studies on the improvement of search in Gnutella-like P2P
networks [6]–[9]. Our characterizations can be directly used
by these studies as a reference for comparison of suggested
topology models, and our captured overlay snapshots can
be used for trace-driven simulation of their proposed search
mechanisms.

Finally, the research studies on characterization of the
Internet topology (e.g., [41]) and network topology generators
(e.g., [42]) are closely related to our work. However, these
studies focus on the Internet topology rather than an overlay
topology. We plan to conduct further characterization of the
Gnutella topology by applying some of the suggested graph
analysis in these studies to the Gnutella overlay topology.

VI. CONCLUSIONS

In this paper, we presented Cruiser, a crawler for rapidly
capturing accurate snapshots of P2P overlay topologies. We
showed how a crawler that is too slow may introduce signif-
icant measurement error, introduce techniques for measuring
the accuracy of a crawler, and found that inadequate crawler
speed may have been responsible for some conclusions in prior
work such as a power-law degree distribution.

Using Gnutella, we presented the first detailed character-
ization of an unstructured two-tier overlay topology that is
typical of modern popular P2P systems, based on accurate
and complete snapshots captured with Cruiser. We character-
ized the graph-related properties of individual snapshots, the
dynamics of the overlay topology across different time scales,
and investigated the underlying causes and implications. Our
main findings are summarized in Section I-A.

This study developed essential insights into the behavior
of overlay topologies which are necessary to improve the
design and evaluation of peer-to-peer file-sharing applications.
The existence of a stable well-connected core of long-lived
peers suggests that there may be benefits in terms of in-
creasing search resilience in the face of overlay dynamics,
by biasing/directing the search towards longer lived peers and
therefore towards this core. It may also be useful to cache
indexes or content at long-lived peers in order to reduce
load on the stable core, especially if the biased forwarding
of queries is adopted. For example, the idea of one-hop
replication [43], intended for power-law topologies, can be
changed to a probabilistic one-hop replication biased towards
peers with longer uptime.

We are continuing this work in a number of directions.
To complement Cruiser’s approach of capturing the entire
network, we are also developing sampling techniques for
peer-to-peer networks that may be used when capturing the
entire network is infeasible. We are also gathering data from
Gnutella, Kad, and BitTorrent to conduct a detailed charac-
terization of the dynamics of peer participation (or churn) to
develop useful models for use in simulation and analysis.
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